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Abstract— Cooperative multi-agent reinforcement learning
(MARL) approaches tackle the challenge of finding effective
multi-agent cooperation strategies for accomplishing individual
or shared objectives in multi-agent teams. In real-world scenar-
ios, however, agents may encounter unforeseen failures due to
constraints like battery depletion or mechanical issues. Existing
state-of-the-art methods in MARL often recover slowly – if at all
– from such malfunctions once agents have already converged
on a cooperation strategy . To address this gap, we present the
Collaborative Adaptation (CA) framework. CA introduces a
mechanism that guides collaboration and accelerates adaptation
from unforeseen failures by leveraging inter-agent relationships.
Our findings demonstrate that CA enables agents to act on the
knowledge of inter-agent relations, recovering from unforeseen
agent failures and selecting appropriate cooperative strategies.

I. INTRODUCTION

Multi-robot* scenarios are commonly encountered in var-
ious domains, including search & rescue operations [1], au-
tonomous driving [2], [3], and logistics & transportation [4].
The coordination and cooperation between agents are es-
sential in these scenarios, enabling them to achieve shared
or individual goals [5]. They become particularly crucial
when addressing unexpected malfunctions that robots may
experience, such as battery failure leading to immobilization
or rotation failure restricting movement to a single direction.
It is imperative for agents to effectively cooperate with each
other, autonomously recover from such failures promptly, and
adapt their strategies as a team to overcome the challenges
arising from agent malfunction(s).

Within the field of Multi-Agent Reinforcement Learning
(MARL) for cooperative tasks, the Centralized Training with
Decentralized Execution (CTDE) paradigm has emerged as a
prominent approach. It effectively addresses a range of coop-
erative challenges, including curse of dimensionality [6], [7],
non-stationarity [5], and global exploration [8]. Despite its
impressive performance in coordination tasks, CTDE-based
approaches suffer from a notable drawback: slow adaptation
to unexpected agent failures. This issue arises from two
primary factors. Firstly, these approaches lack explicit mech-
anisms to handle such unpredictable failure cases. Secondly,
they do not incorporate features that promote enhanced
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collaboration between agents, resulting in a slower adaptation
process where the model must independently discover which
collaboration strategies to pursue after learning new ones.

In this paper, we introduce a novel algorithm that extends
the CTDE paradigm. Our algorithm leverages a relational
network to capture the relative importance assigned by agents
to one another, enabling faster adaptation in the face of
unexpected robot failures. To evaluate the effectiveness of
our method, we experimented in a multi-robot environment,
focusing on a cooperative task with simulated random mal-
functions. We compared our approach to the state-of-the-art,
Value Decomposition Networks (VDN) [9]. The findings of
our study demonstrate that our proposed approach facilitates
effective cooperation within a multi-robot team, enabling
faster adaptation to unforeseen malfunctions through the
utilization of relational networks.

II. RELATED WORK

In recent years, Multi-Agent Reinforcement Learning
(MARL) has emerged as a prominent research area, par-
ticularly in cooperative settings. Numerous approaches have
been explored to enable effective collaboration among agents
in pursuit of a common objective. One widely studied
approach is fully centralized learning, where a single con-
troller is shared among all agents, allowing them to learn
a joint policy or value function collectively [10]. Despite
its potential advantages, fully centralized learning can be
computationally demanding and face intractability challenges
due to the exponential growth of the observation and action
space as the number of agents increases. An alternative
strategy in MARL is fully decentralized learning, where
each agent independently learns its own policy. The co-
operative behavior then emerges from the application of
these learned policies within the environment. For example,
Independent Q-Learning (IQL) [11] employs separate action-
value tables for each agent, utilizing Q-learning as the
underlying learning mechanism. To address the limitations
of tabular Q-learning in high-dimensional state and action
spaces, the IQL framework was later extended to incorporate
function approximation techniques [12]. However, indepen-
dent learning approaches in multi-agent settings are prone
to non-stationarity issues, which arise from the changing
actions of other agents as perceived by a given agent. Due
to the violation of the Markov property in non-stationary
environments, the convergence of decentralized algorithms
based on Q-learning cannot be guaranteed [13].

In cooperative MARL scenarios, the limitations of fully
centralized and fully decentralized learning approaches have



led to the development of a novel paradigm known as Cen-
tralized Training with Decentralized Execution (CTDE) [14].
CTDE enables individual agents to execute their actions
autonomously while leveraging a centralized mechanism to
integrate their strategies, thereby facilitating effective coor-
dination and alignment towards a common objective. By em-
ploying centralized training, CTDE effectively addresses the
challenge of non-stationarity in decentralized learning, while
also overcoming the scalability challenges associated with
centralized learning through decentralized execution. This
paradigm has been implemented using two main approaches:
policy-based and value-based methods. Policy-based meth-
ods such as Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) [15] and Multi-Agent Proximal Policy Opti-
mization (MAPPO) [16] incorporate a critic that takes into
account the global observations of all agents. On the other
hand, value-based techniques including Value Decomposition
Networks [9], QMIX [17], and QTRAN [18] enhance Q-
Learning by incorporating a centralized function that cal-
culates the joint Q-value based on the individual action-
values of each agent. These approaches have demonstrated
effectiveness in addressing challenges related to multi-agent
coordination and have shown superior performance across a
range of scenarios.

Existing research in cooperative MARL has primarily
focused on achieving optimal solutions, ranging from fully
centralized learning to the CTDE paradigm. However, when
unforeseen failures occur during the execution of learned
behaviors, these approaches may not promptly adapt the
agents’ policies. One possible approach to recover from robot
malfunctions is to predict the malfunctioning robot and its
timing by enabling agents to estimate the actions of other
agents. The concept of LOLA [19] can be leveraged to
improve performance in such cases. However, when mal-
functions or failures of the agents are not predictable, the
challenge lies in enhancing the agents’ adaptation capability.
One approach to address this challenge is to guide the
agents on how to cooperate under the current environmental
circumstances, enabling them to make faster policy changes.

In this study, we propose a novel framework to enhance
collaborative adaptation by steering the agents’ behavior in
scenarios where unexpected agent malfunction(s) occur. Our
framework focuses on considering the inter-agent relation-
ships, represented as a relational network, which captures
the importance agents place on each other. By leveraging
this relational network, agents can quickly adapt their learned
behaviors to overcome unpredictable failures of their team-
mates. We specifically explore this concept using the VDN
approach, a fast and powerful CTDE method for learning
cooperative behaviors. Yet, it is crucial to emphasize that our
framework of utilizing relationships to address unforeseen
malfunctions can also be extended to other CTDE methods.

III. BACKGROUND

A. Markov Decision Process

We characterized Decentralized Markov Decision Process
as a tuple ⟨S,A,R, T , γ⟩ where s ∈ S indicates the true

state of the environment, the joint set of individual actions
and rewards are represented by A := {a1, a2, . . . , an},
R := {r1, r2, . . . , rn}, respectively, T (s,A, s′) : S × A ×
S 7→ [1, 0] is the dynamics function defining the transition
probability, n is the the number of agents, and γ ∈ [0, 1) is
the discount factor.

B. Value Function Factorization

Value function factorization methods, which our proposed
method build upon, adhere to the CTDE paradigm. These
methods successfully tackle the non-stationarity issue in
decentralized learning by employing centralized training
and effectively address the scalability problem in central-
ized learning by adopting decentralized execution. Notably,
QMIX [17] and VDN [9] serve as exemplary approaches in
factorizing value functions.

QMIX and VDN both maintain a separate action-value,
which defined as Qi(s, ai) = E[G|S = s,A = ai] where G
denotes the return, for each agent i ∈ {1, ..., n}. They merge
these individual Qi values to obtain the central action value
Qtotal using monotonicity and additivity. Specifically, VDN
sums Qis to obtain Qtotal, as

Qtotal =

n∑
i=1

Qi(s, ai),

while QMIX combines them using a state-dependent contin-
uous monotonic function, as follows:

Qtotal = fs(Q1(s, a1), ..., Qn(s, an)),

where ∂fs
∂Qi
≥ 0,∀i ∈ {1, ..., n}.

These value function factorization methods rely on Deep
Q-Network (DQN) [20] to approximate the action-value
function Q̂i(s, ai, θi) where θi is the weight vector. DQN
is advantageous compared to tabular Q-learning as it can
effectively handle high-dimensional state and action spaces
by utilizing deep learning techniques. However, training
DQN presents significant challenges due to instability and
divergence resulting from updating the Q-network parame-
ters in each step, violating the assumption of independently
and identically distributed (i.i.d) data points. To tackle these
challenges, Mnih et al. [20] introduced techniques such as
experience replay and fixed Q-target networks, which have
now become standard in various deep reinforcement learning
algorithms.

In brief, these value function factorization methods com-
monly utilize two deep Q-neural networks for each Q-
function (i.e., each agent), namely the Prediction Neural
Network (P-NN), and the fixed Target Neural Network (T-
NN) which is essentially a copy of the P-NN from a pre-
vious iteration. Additionally, a replay memory is employed
to store a large number of transitions experienced by the
agent during its interactions with the environment. Each
transition consists of a tuple ⟨s, a, r, s′⟩. To train the P-NN,
a batch of transitions of size b is sampled from memory, and
the Temporal Difference (TD) error is calculated between



the Q̂target
total and Q̂prediction

total , as follows:

eTD =

b∑
i=1

[rteam + γmax
a′

(Q̂total(s
′, u′, θt))− Q̂total(s, u, θp)],

(1)

where rteam defined as the sum of rewards obtained by the
agents, each having equal weights, u denoted as the joint
action of the agents, θp represents the weights of the P-NN
and θt indicates the weights of the T-NN, which are regularly
updated with θp. And, θp are updated using an optimizer to
minimize the eTD. This process facilitates the coordination
of agent actions towards maximizing the team reward. As
a result, the key aspect of the CTDE paradigm becomes
evident: the agent networks are trained using a centralized
Qtotal, while each agent’s actions are determined by its own
neural network, resulting in decentralized execution.

IV. PROPOSED METHOD

In cooperative MARL, different team structures often
result in multiple solutions of varying optimality. Value fac-
torization methods and similar approaches aim to maximize
team rewards and converge towards one of several solutions,
potentially achieving the global optimum. The stochastic
nature of agents’ exploration can influence convergence
towards a specific team behavior, particularly when multiple
cooperation strategies exist with the same maximum total
reward. However, in real-world scenarios, individual robots
may encounter unexpected malfunctions (e.g., battery failure,
rotation failure, etc.) after their policies have converged to a
particular cooperative strategy, posing challenges for learning
and adapting to new strategies without a deep understanding
of the team structure.

To overcome these challenges, it would be beneficial to
have a mechanism that considers inter-agent relationships
and prioritizes assisting malfunctioning agents. This mecha-
nism could improve team performance or accelerate adapta-
tion by guiding agents’ behavior towards either helping the
malfunctioning agent solve its task or completing the task
on its behalf. Unfortunately, the current cooperative MARL
algorithms lack such a mechanism, making it more difficult
and time-consuming to adapt to unforeseen malfunctions.
To address this issue, we propose a novel framework called
Collaborative Adaptation (CA). The CA framework enables
agents to comprehend inter-agent relationships and select a
cooperative strategy accordingly, allowing them to handle
the adaptation of new environmental settings collaboratively.
In our research, we explore and study this framework using
the VDN algorithm, referred to as CA-VDN, due to its sim-
plicity and effectiveness as a cooperative behavior learning
approach.

The proposed framework employs a relational network in
the form of a directed graph G = (V, E ,W) to represent
the relationships between agents. In this graph, each agent
i ∈ {1, ..., n} is represented as a vertex vi, E denotes the
set of directed edges eij directed from vi to vj , and the
weights of these edges are captured in the matrix W , with

Algorithm 1: Collaborative Adaptation

input : P-NN, Q̂prediction; T-NN, Q̂target; relational
network, G; batch size, b; number of
iterations for updates, m; update frequency
of T-NN, k

1 foreach episode do
2 Initialize s
3 foreach step of episode do
4 Choose a from s using policy derived from

Q̂prediction (with ε-greedy)
5 Take action a, observe r, s′

6 Store s, a, r, s′ in memory
7 s← s′

8 for i = 1, . . . ,m do
9 S, A, R, S′ ← sample chunk, size of b, from

memory
10 Qprediction

values ← Q̂prediction(S)
11 Qprediction

values ← action A of Qprediction
values of every

agent in every sample
12 Qprediction

total ← sum Qprediction per sample
13 Qtarget

values ← Q̂target(S′)
14 Qtarget ← max of Qtarget

values of every agent in
every sample

15 Qtarget
total ← sum Qtarget per sample

16 Rteam ← use (2) with G and R

17 loss← use (1) with Rteam, Qtarget
total , Qprediction

total
18 Backpropagate the loss to the parameters of

Q̂prediction

19 Update the parameters of Q̂target with the
parameters of Q̂prediction foreach kth episode

elements wij ∈ [0, 1] assigned to each edge. The direction
and weight of the edges in the graph signify the importance
or vested interest that agent i places on the outcomes for
agent j. Moreover, the framework modifies to MDP as
⟨S,A,R, T ,G, γ⟩ to incorporate G. And, the rteam, used
in (1), is calculated based on the relational network, as
follows:

rteam =
∑
i∈V

∑
j∈Ei

wijrj , (2)

where Ei denotes the set of vertex indices that have an edge
directed from vi, and rj is the reward of the agent represented
by vj . This allows for the agents to follow a cooperative
strategy that assists the malfunction agent since they place
extra importance on its reward. The pseudo-code for the CA
framework can be found in Algorithm 1.

To identify malfunctioning agents and determine when
these malfunctions occur, and facilitate changes in inter-
agent relations to support these agents, a mechanism – mal-
function trigger – has been implemented to track individual
agents’ rewards. The underlying assumption is that agents
may experience malfunctions after converging on a specific
behavior, highlighting the challenges faced by existing co-



(a) (b) (c) 

Fig. 1: (a) multi-agent grid-world environment with four agents.
(b-c) Relational networks employed in CA-VDN

operative MARL algorithms in altering already converged
behaviors in response to unpredictable failures. When the
malfunction trigger observes a significant decrease in an
individual agent’s reward over a certain number of episodes,
it signals this information to the framework, indicating the
presence of malfunctioning agent(s). Upon receiving this
information, the framework dynamically adjusts the rela-
tional network, leading other agents to assign importance
to the malfunctioning agent(s) by modifying the weights of
the corresponding edges. Additionally, the framework resets
the exploration process to allow the agent to discover new
cooperative strategies based on the updated relationships. It’s
important to note that during the comparison of results with
other methods, the exploration parameter of these methods
is also reset to enable them to explore anew.

V. EXPERIMENTS

A. Environment

To evaluate the effectiveness of the proposed approach
in influencing agents’ behaviors and enhancing their adap-
tation to unforeseen failures of the agent(s), we conducted
experiments using the CA-VDN and VDN algorithms in a
multi-agent grid-world environment. The environment is rep-
resented as a 4x4 grid with four agents and four undedicated
resources, as illustrated in Fig. (a).

In this environment, the objective of each episode is for
the agents to consume all the resources by visiting their
respective locations. To achieve this, the agents have five
possible actions: move up, down, left, right, or stay idle.

(a) (b)

Fig. 2: Results before malfunction. (a) VDN, (b) CA-VDN with
relational network in Fig. 1(b).

Additionally, they can engage in a special action called push,
which allows them to push adjacent agents, provided that the
pushing agent takes a non-idle action towards the pushed
agent, who must be idle. As a result of a push, the pushing
agent remains in place while the other agent moves one space
in the direction of the push.

Upon successfully consuming a resource, the consumer
agent receive a reward of +10 and each resource can only be
consumed once. Nevertheless, the agent incurs an individual
penalty of −1 for every time-step per unconsumed resource,
except when they are occupying a resource location, which
serves as a safe spot. The episode terminates either when
all the resources are consumed or when the maximum time
steps are reached.

We intentionally designed this environment to be solv-
able by VDN while also highlighting the challenges that
unexpected malfunctions can bring, even in a seemingly
simple setting. Furthermore, our goal is to showcase how the
integration of relationships between agents into the learning
process can effectively overcome these challenges.

B. Models and Hyperparameters

In our experimental setup, we utilized a Multi-Layer
Perceptron (MLP) with two hidden layers, each containing
128 neurons, and using the ReLU activation function. To
train each agent’s prediction model, we conducted m = 10
iterations per episode, using batches of size b = 32 randomly
sampled from a replay memory with a capacity of 50k
time-steps. The optimization was performed using the Adam
optimizer with a learning rate of 0.001, and the squared TD-
error served as the loss function.

To maintain stability during training, we updated the
weights of the target network with the prediction network’s
weights every k = 200 episodes. For exploration, we
employed the ε-greedy method, with ε linearly decreasing
over time. Lastly, we set the discount factor (γ) to 0.99
to account for future rewards in the reinforcement learning
process.

C. Results & Discussion

The experimental results, presented in Fig. 2 and Fig. 3,
show the average training reward over 10 runs, represented
by the shaded regions, as well as the average test rewards
of the agents indicated by the solid lines. The test rewards
are evaluated based on a greedy strategy, interrupting the
training process every 50 episodes to assess individual agent
rewards. During each run, at the five thousandth episode, we
simulate a malfunction that prevents the green agent (refer

TABLE I: Average reward with 95% confidence intervals for
ten runs after training completed.

Before Malfunction After Malfunction
VDN CA-VDN VDN CA-VDN

Blue Agent 5.80±0.25 5.50±0.64 -74.20±45.99 6.90±4.28
Red Agent 5.50±0.50 5.70±0.40 -63.60±39.42 9.90±6.14

Orange Agent 5.20±0.67 5.40±0.79 -66.50±41.22 9.70±6.01
Green Agent 5.70±0.40 5.60±0.74 -35.70±22.13 10.50±6.51



(a) (b)

Fig. 3: Results with malfunction. (a) VDN, (b) CA-VDN with
relational network in Fig. 1(c).

to Fig. 1(a)) from moving. It is crucial to highlight that this
malfunction was not anticipated by the algorithms.

During the initial phase, when all agents are fully func-
tional, both VDN and CA-VDN, which incorporate the
relational network illustrated in Fig. 1(b), demonstrate com-
parable performance. This similarity is evident in the agents’
average rewards, as depicted in Fig. 2(a) and Fig. 2(b)
respectively, and they eventually converge to the same be-
havior. The resemblance in performance arises from the fact
that in VDN, each agent contributes their reward equally to
the team’s overall reward, aligning with the utilization of
the self-interested relational network. Essentially, the agents
share resources among themselves based on their proximity
to those resources and subsequently consume them. The
similarity in individual rewards for both algorithms after the
initial phase concludes is demonstrated in Table 2.

At the five thousandth episode, our framework’s malfunc-
tion trigger detects the occurrence of a malfunction. As
VDN lacks a support mechanism that considers inter-agent
relationships, the only available option is to reset the ε value
to increase exploration. Despite this attempt, as shown in
Fig. 3(a), VDN still faces challenges in recovering from
malfunction scenarios.

On the other hand, during the reset of ε, we also modify
the applied relational network from Fig. 1(b) to Fig. 1(c).
This alteration ensures that other agents place importance
on the malfunctioning agent. As a result, agents can adapt
faster to the new condition, as indicated in Fig. 3(b). To
evaluate the effectiveness, we present the numeric results of
each agent’s individual reward in Table I for both before and
after the malfunction.

Overall, it is essential to highlight that agents trained with
CA-VDN can learn together to recover from unforeseen
malfunctions, a capability that VDN lacks even after 20k
episodes following the occurrence of a malfunction.

VI. CONCLUSION AND FUTURE WORK

We propose a novel framework that incorporates inter-
agent relationships into agents’ learning, enabling agents
to recover from unforeseen malfunctions as a team. Our
experiments validated the effectiveness of our approach in

faster adaptation to the environment in the face of unexpected
robot failures. As a next step, we aim to conduct additional
experiments in more complex environments that involve
multiple agents with different malfunctions and compare
the performance of our algorithm with other state-of-the-art
methods.
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