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Abstract— This work studies the behaviors of two large-
population teams competing in a discrete environment, where
agents within each team are of different types. The team-
level interactions are modeled as a zero-sum game, while the
dynamics within each team is formulated as a collaborative
mean-field team problem. Following the mean-field literature,
we first approximate the large-population team game with
its infinite-population limit. We then introduce two fictitious
coordinators and transform the infinite-population game to an
equivalent zero-sum coordinator game. We study the optimal
strategies for each team via a novel reachability analysis.
We show that the obtained team strategies are decentralized
and are ε-optimal for the original finite-population game. The
theoretical guarantees are verified by numerical examples.

INTRODUCTION

Multi-agent decision-making arises in many applications,
ranging from warehouse robots [1] to organizational eco-
nomics [2]. While the majority of the literature formulates
the problems within either the cooperative or competitive
setting, results on mixed collaborative-competitive team be-
haviors are relatively sparse. In this work, we consider a
competitive team game, where two teams, each comprised
of a large number of intelligent agents, compete at the team
level, while the agents within the same team collaborate.
Such hierarchical interactions are of particular interest to mil-
itary operations and other multi-agent systems that operate
in adversarial environments.

There are two major challenges when trying to solve such
competitive team problems:

1) Large-population team problems are computationally
challenging since the solution complexity increases
exponentially with the number of agents.

2) Competitive team problems are conceptually challeng-
ing due to the unknown nature of the opponent strate-
gies. In particular, one may want to impose additional
assumptions on the opponent team (e.g., all adversarial
agents apply the same strategy) to obtain tractable so-
lutions, but these assumptions may not hold in practice.

The scalability challenge has been addressed in a specific
class of single-team problems known as the mean-field
team game [3]. The salient feature of a mean-field team is
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that a group of homogeneous agents are weakly-coupled in
their dynamics and rewards through their state distribution
(the so-called mean-field). Under the assumption that all
agents apply the same strategy, the intractable interactions
among agents can be reduced to the interaction between a
typical agent and the ‘mass’ of infinitely many other agents.
A dynamic programming decomposition is then developed
leveraging the common-information approach [4] so that all
agents within the team deploy the same strategy prescribed
by a fictitious coordinator. In the competitive team setting,
although one may restrict the strategies used by the agents
within his/her team to be identical, making the same as-
sumption on the opponent team may result in a significant
underestimation of the opponent’s capabilities, and thus such
assumption needs further justification.

Our contribution: We begin by formulating a zero-
sum mean-field team game (ZS-MFTG) under the discrete-
time, finite state and action spaces setting, where the agents’
dynamics and the team rewards are coupled through the state
distributions of both teams. Different from the single-team
setting in [3], agents in our formulation collaborate within
each team while compete at the team level.

Leveraging the common-information approach [5], we
show that the ZS-MFTG at its infinite-population limit
is equivalent to a zero-sum game between two fictitious
coordinators, and the optimal team strategy can be easily
obtained via dynamic programming. Through a reachability-
based analysis, we prove that the solution obtained under the
identical team strategy assumption is still ε-optimal in the
original finite-population game, even if the opponent team is
allowed to deploy a non-identical team strategy.

Notations: We use rns to denote t1, 2, . . . , nu. The
indicator function is denoted as 1¨

`

¨
˘

, such that 1a
`

b
˘

“ 1
if a“b and 0 otherwise. We use uppercase letters to denote
random variables (e.g., X and M) and lowercase letters to
denote their realizations (e.g., x and µ). For a finite set E, we
denote the space of probability measures over E as PpEq.

PROBLEM FORMULATION

Consider a discrete-time system with two large-population
teams that operate over a finite horizon T . The Blue team has
L sub-populations, with the `-th sub-population consisting of
N `

1 homogeneous agents. On the other hand, the Red team
has M sub-populations, and there are Nm

2 homogeneous
agents in the m-th sub-population. The Blue and Red team
sizes are given by N1“

řL
`“1N

`
1 and N2 “

řM
m“1N

2
m, and

the total system size is denoted as N “N1 ` N2. We use
the vector ρ “ p

N1
1

N , . . . ,
NL1
N ,

N1
2

N , . . . ,
NM2
N q to characterize



the size ratio among the sub-populations. Let X`,N1

i,t P X `

and U `,N1

i,t PU` denote the random variables representing the
state and action taken by a type-` Blue agent iPrN `

1s at time
t. Here, X ` and U` represent the finite individual state and
action spaces for each type-` Blue agent, independent of i
and t. Similarly, we use Y m,N2

j,t P Ym and V m,N2

j,t P Vm
to denote the individual state and action of a type-m Red
agent j. The joint state of Blue sub-population ` is denoted
as X`,N1

t and the joint state of the Blue team is denoted as
XN1
t “ pX`,N1

t q`PrLs. The joint state YN2
t for the Red team

is constructed similarly.
Definition 1: The empirical distribution (ED) for the Blue

and Red sub-populations are defined as

M`,N1

t pxq “
1

N `
1

N`1
ÿ

i“1

1xpX
`,N1

i,t q, x P X `, (1a)

Nm,N2

t pyq “
1

Nm
2

Nm2
ÿ

j“1

1ypY
m,N2

j,t q, y P Ym. (1b)

Note that M`,N1

t P PpX `q and Nm,N2

t P PpYmq. The team
EDs are denoted as MN1

t “ pM`,N1

t q`PrLs and NN2
t “

pNm,N2

t qmPrMs. With a slight abuse of notations, we define
the spaces for team distributions as PpX q “Ś

` PpX `q and
PpYq “Ś

m PpXmq, and we use the following operator to
relate the team joint states and the corresponding team EDs:

MN1
t “ EmppXN1

t q, NN2
t “ EmppYN2

t q.

Definition 2: We define the distance between two Blue
team distributions µ, µ1 P PpX q as

dTV

`

µ, µ1
˘

“ max
`PrLs

1

2

ÿ

xPX `

∣∣∣µ`pxq ´ µ`1pxq
∣∣∣ .

The distance between Red team distributions are similarly
defined.

Dynamics: We consider weakly-coupled dynamics,
where the dynamics of each individual agent is coupled with
other agents through the EDs. The stochastic transition of
type-` Blue agent i is governed by the kernel f `,ρt such that

PpX`,N1

i,t`1 “ x`,N1

i,t`1|U
`,N1

i,t “ u`,N1

i,t ,XN1
t “ xN1

t ,YN2
t “ yN2

t q

“ f `,ρt px`,N1

i,t`1|x
`,N1

i,t , u`,N1

i,t , µN1
t , νN2

t q,

where µN1
t “ EmppxN1

t q and νN2
t “ EmppyN2

t q are the
team EDs. Similarly, the dynamics of type-m Red agent j
of is governed by gm,ρt pym,N2

j,t`1 |y
m,N2

j,t , vm,N2

j,t , µN1
t , νN2

t q.
Assumption 1: For all x P X , u P U , and ` P rLs, there

exist a positive constant Lft such that, for all µ, µ1 P PpX q
and ν, ν1 P PpYq,
ÿ

x1PX

∣∣∣f `,ρt px1|x, u, µ, νq ´ f `,ρt px1|x, u, µ1, ν1q
∣∣∣

ď Lft

´

dTV

`

µ, µ1
˘

` dTV

`

ν, ν1
˘

¯

.

We also assume that gρt is Lgt -Lipschitz.

Reward Structure: Under the team-game framework,
agents in the same team share the same reward. Similar to
the dynamics, we consider a weakly-coupled team reward

rρt : PpX q ˆ PpYq Ñ r´Rmax, Rmaxs.

Assumption 2: For all µ, µ1 P PpX q, ν, ν1 P PpYq and
tPt0, . . ., T u, there exist Lr ě 0 such that
∣∣rρt pµ, νq ´ rρt pµ1, ν1q

∣∣ ď Lr
`

dTV

`

µ, µ1
˘

` dTV

`

ν, ν1
˘˘

.
Under the zero-sum reward structure, we let the Blue team

maximize the reward while the Red team minimizes it.

Information Structure: We assume a mean-field sharing
information structure [3]. Specifically, at each time step t,
Blue agent i observes its state X`,N1

i,t and the team EDs MN1
t

and NN2
t . Similarly, Red agent j observes Y m,N2

j,t and the
team EDs. We consider the following mixed Markov policies:

φ`i,t : U` ˆ X ` ˆ PpX q ˆ PpYq Ñ r0, 1s,

ψmj,t : Vm ˆ Ym ˆ PpX q ˆ PpYq Ñ r0, 1s,

where φ`i,tpu|X
`,N1

i,t ,MN1
t ,NN2

t q is the probability that the
type-` Blue agent i selects action u given its state X`,N1

i,t and
the team EDs MN1

t and NN2
t . An individual strategy for the

Blue agent i is defined as a time sequence φ`i “ tφ
`
i,tu

T
t“0.

Since Blue agents of the same type have the same state
and action spaces, they share the same policy space. Hence,
we denote Φ`t and Φ` to be the set of individual policies
and strategies available to each type-` Blue agent. The Blue
team strategy φN1 “ tφ`iu`PrLs,iPrN`1s is the collection of
individual strategies used by each Blue agent. We use ΦN1 “
Ś

`PrLs,iPrN`s Φ
` to denote the set of Blue team strategies.

Note that ΦN1 contains team strategies where agents of the
same type apply different strategies. The notation extends
naturally to the Red team.

Optimization Problem: The performance of team strat-
egy pair pφN1,ψN2q is given by the cumulative reward

JN,φ
N1 ,ψN2

`

xN1
0 ,yN2

0

˘

“EφN1 ,ψN2

«

T
ÿ

t“0

rρt pMN1
t ,NN2

t q

ˇ

ˇ

ˇ
XN1

0 “ xN1
0 ,YN2

0 “ yN2
0

ff

,

where MN1
t “ EmppXN1

t q and NN2
t “ EmppYN2

t q, and the
expectation is with respect to the distribution of all system
variables induced by pφN1 , ψN2q P ΦN1 ˆΨN2 .

When the Blue team considers its worst-case performance,
we have the following max-min optimization:

JN˚ “ max
φN1PΦN1

min
ψN2PΨN2

JN,φ
N1 ,ψN2

, (2)

where JN˚ is the lower game value for the finite-population
game. Note that the game value may not always exist, i.e.,
max-min value may differ from the min-max value [6]. Con-
sequently, we consider the following optimality condition for
the Blue team strategy.

Definition 3: A Blue team strategy φN1˚ is ε-optimal if

JN˚ ě min
ψN2PΨN2

JN,φ
N1˚,ψN2

ě JN˚ ´ ε.



Note that ε measures the exploitability of a Blue team
strategy, and the strategy φN1˚ is optimal if ε “ 0.

Similarly, the minimizing Red team considers a min-max
optimization problem, which leads to the upper game value

J̄N˚ “ min
ψN2PΨN2

max
φN1PΦN1

JN,φ
N1 ,ψN2

.

The ε-optimality of Red team strategies is defined similarly.
The rest of the paper focuses on the performance analysis

from the Blue team’s perspective (max-min optimization),
but the techniques developed are applicable to the Red team’s
side due to the symmetry of the problem formulation.

MEAN-FIELD APPROXIMATION

The preceding max-min optimization is intractable for
large-population systems, since the dimension of the joint
policy spaces ΦN1 and ΨN2 grows exponentially with the
number of the agents. To address this scalability issue,
we first consider the infinite-population limit of the large-
population team games. We further assume that agents of
the same type employ the same strategy. As a result, the
behavioral of the entire sub-population can be represented
by a typical agent [7]. As we will show later, due to the law
of large numbers, the ED of an infinite-size sub-population
converges to the state distribution of its typical agent. This
limiting distribution is known as the mean-field (MF). In the
sequel, we formulate the mean-field team game at its infinite-
population limit and introduce additional concepts essential
to the performance analysis in later sections.

Mean-field dynamics

We first introduce the class of identical team strategies.
Definition 4: The Blue team strategy φN1 “

tφ`iu`PrLs,iPrN`1s is an identical team strategy, if for all
sub-population ` P rLs, φ`i1 “ φ`i2 for all i1, i2 P rN `

1s.
When all type-` Blue agents apply the same individual

strategy φ`, we slightly abuse the notation and use φ` to
denote the identical sub-population strategy. Furthermore, we
use Φ “

ŚL
`“1 Φ` to denote the set of Blue team strategies,

where each Blue sub-population applies an identical strategy.
Note that, under an identical team strategy, agents of different
types may still apply different strategies. The definitions and
notations extend to the identical Red team strategies.

Under identical team strategies, we define the mean-field
(MF) as the state distribution of a typical agent.

Definition 5: Under identical team strategies φ“tφ`u` P
Φ and ψ“tψmum P Ψ, the sub-population MFs propagate
according to the following deterministic dynamics:

µ`,ρt`1px
1q“

ÿ

xPX`

”

ÿ

uPU`
f`,ρt px1|x, u, µρt , ν

ρ
t qφ

`
tpu|x, µ

ρ
t , ν

ρ
t q

ı

µ`,ρt pxq,

νm,ρt`1 py
1q “

ÿ

yPYm

”

ÿ

vPVm
gm,ρt py1|y, v, µρt , ν

ρ
t qψ

m
t pv|y, µ

ρ
t , ν

ρ
t q

ı

νm,ρt pyq.

The above deterministic mean-field dynamics can be ex-
pressed in a compact matrix form as

µ`,ρt`1 “ µ`,ρt F `,ρt pµρt , ν
ρ
t , φ

`
tq,

νm,ρt`1 “ νm,ρt Gm,ρt pµρt , ν
ρ
t , ψ

m
t q,

(3)

where F `,ρt P R|X `
|ˆ|X `

| is the transition matrix for a typical
type-` Blue agent under φ`t , and Gm,ρt is defined similarly.

For the infinite-population game, the performance of the
identical team strategies pφ, ψq P ΦˆΨ is given by

Jρ,φ,ψpµρ0, ν
ρ
0 q “

T
ÿ

t“0

rρt pµ
ρ
t , ν

ρ
t q,

where the propagation of the team mean-fields µρt “ tµ
`,ρ
t u`

and νρt “ tν
m,ρ
t um is subject to the dynamics in (3).

The worst-case performance of the maximizing Blue team
is then given by the lower game value

Jρ˚pµρ0, ν
ρ
0 q “ max

φPΦ
min
ψPΨ

Jρ,φ,ψpµρ0, ν
ρ
0 q. (4)

Reachable Sets

Due to the deterministic dynamics in (3), designing the
identical team policies φt and ψt at time t is equivalent to
selecting the desirable next MFs for each sub-population.
Consequently, we examine the set of MFs that can be
achieved at the next time step. We use π`t : U`ˆX ` Ñ r0, 1s
to denote an identical local policies of the type-` Blue
agents, which is open-loop with respect to the team MFs.
Specifically, π`t pu

`|x`q is the probability that a Blue agent
selects action u` at state x` regardless of the current MFs.
The set of Blue local policies is denoted as Π`

t . Similarly,
σmt : VmˆYm Ñ r0, 1s and Σmt denote the Red local policy
and its admissible set. Under local policy π`t , the type-` sub-
population MF propagates according to

µ`,ρt`1px
1q “

ÿ

xPX `

”

ÿ

uPU`
f `,ρt px1|x, u, µρt , ν

ρ
t qπ

`
t pu|xq

ı

µ`,ρt pxq,

(5)
and the dynamics of Red sub-population MF under local
policies are defined similarly.

To facilitate later analysis, we provide the following defi-
nition of the reachable sets for the Blue and Red team MFs.

Definition 6: The Blue reachable set, starting from the
team MFs µρt “ tµ

`,ρ
t u` and νρt “ tν

m,ρ
t um is defined as

Rρ
µ,tpµ

ρ
t , ν

ρ
t qfitµ

ρ
t`1 “ tµ

`,ρ
t`1u`|@` P rLs, Dπ

`
t PΠ`

t s.t.

µ`,ρt`1“µ
`,ρ
t F `,ρt pµρt , ν

ρ
t , π

`
t qu.

In the sequel, we regard the reachable sets as corre-
spondences (set-valued functions) [8], i.e., Rρ

µ,tpµ
ρ
t , ν

ρ
t q :

PpX q ˆ PpYq ù PpX q. The following lemma justifies
the use of the reachable sets constructed based on the local
policies to analyze the reachability of identical team policies.

Lemma 1: For all µρt P PpX q, νρt P PpYq, we have that

Rρ
µ,tpµ

ρ
t , ν

ρ
t q “

 

µρt`1 “tµ
`,ρ
t`1u`|@` P rLs, Dφ

`
t P Φ`t

s.t. µ`,ρt`1“µ
`,ρ
t F `,ρt pµρt , ν

ρ
t , φ

`
tq
(

.

Approximation Error

The following theorem states that the reachable set con-
structed under the identical policy assumption at the infinite-
population limit is actually rich enough to approximate the
empirical distributions induced by any non-identical team
policy in the finite-population games.



Theorem 1: Consider a finite-population game and denote
the next Blue team ED induced by a (potentially non-
identical) Blue team policy φN1

t PΦN1
t as MN1

t`1. There exists
µt`1 PRρ

µ,tpMN1
t ,NN2

t q such that

E
φ
N1
t

”

dTV

`

MN1
t`1, µt`1

˘
ˇ

ˇXN1
t ,YN2

t

ı

ď
|X |
2

d

1

N1

, (6)

where |X | “ max`PrLs |X `| and N1 “ min`PrLsN
`
1 .

Proof: The key step in the proof is to construct an
identical local policy π`apprx,t for each sub-population that
has its action distribution matching the average of the policies
used by the type-` agents at each state. One can then leverage
π`apprx,t to mimic the population behavior and use a modified
l2 weak law of large numbers to show that the sub-population
MF induced by π`apprx,t satisfies the error bound in (6) with
error |X `|{2

a

N `
1 and is within the reachable set. See [9]

for a detailed proof.

ZERO-SUM GAME BETWEEN COORDINATORS

To efficiently solve the infinite-population game, we con-
struct a fictitious centralized coordinated system by intro-
ducing the Blue and Red coordinators for the two teams
respectively. At time t, the Blue coordinator observes the
MFs of both teams and chooses a local policy π`t P Π`

t for
each of its sub-population according to:

π`t “ α`t
`

µρt , ν
ρ
t

˘

,

where α`t : PpX q ˆ PpYq Ñ Π`
t is a deterministic

Blue coordination policy for the type-` population, and
π`t pu

`
t|x

`
tq fi α`tpµ

ρ
t , ν

ρ
t qpu

`
t|x

`
tq gives the probability that a

type-` Blue agent selects action u`t at state x`t . Similarly,
the Red coordinator observes the team MFs and selects
a local policy for its type-m sub-population according to
σmt “ βmt

`

µρt , ν
ρ
t

˘

.
We refer to the collection πt “ pπ`t q` as the Blue team

local policy and denote its admissible set as Πt. Similarly,
the Red team local policy is denoted as σt “ pσmt qm P Σt.
The coordination policy for the whole Blue team can then
be defined as αt : PpX q ˆ PpYq Ñ Πt, which selects
local policies for each sub-population. Similarly, the Red
coordination strategy is defined as βt : PpX qˆPpYq Ñ Σt.
We refer to α “ tαtut as the coordination strategy for the
Blue team and β “ tβtut as the Red coordination strategy,
and the admissible sets are denoted as A and B.

Remark 1: There is a one-to-one correspondence between
the Blue (Red) coordination strategies and the identical Blue
(Red) team strategies.

The equivalent centralized system can be viewed as a zero-
sum game played between the two coordinators, where the
game state is the joint team MF pµρt , ν

ρ
t q, and the actions are

the team local policies πt “ pπ`t q` and σt “ pσ
m
t qm. Note

that both the state and action spaces of the coordinator game
are continuous.

Similar to the standard two-player zero-sum games, we
use a backward induction scheme to find the lower value of
the coordinator game. The lower value at the terminal time T

is given by Jρ˚cor,T pµ
ρ
T , ν

ρ
T q “ rρT pµ

ρ
T , ν

ρ
T q. For all previous

time steps, the two coordinators optimize their cumulative
reward by choosing their actions (i.e., local team policies)
πt “ pπ

`
t q` and σt “ pσmt qm. Consequently, we have

Jρ˚cor,tpµ
ρ
t , ν

ρ
t q“r

ρ
t pµ

ρ
t , ν

ρ
t q`max

πtPΠt
min
σtPΣt

Jρ˚cor,t`1pµ
ρ
t`1, ν

ρ
t`1q,

(7)

where the Blue team MF µρt`1 “ pµ
`,ρ
t`1q` is propagated for

each sub-population using (5) under the local policy pπ`t q`,
and similarly for νρt`1.
With the optimal value function, the optimal Blue team
coordination policy can then be easily constructed via

α˚t pµ
ρ
t , ν

ρ
t q P (8)

argmax
πtPΠt

min
σtPΣt

Jρ˚cor,t`1

`

µρtF
ρ
t pµ

ρ
t , ν

ρ
t , πtq, ν

ρ
tG

ρ
t pµ

ρ
t , ν

ρ
t , σtq

˘

.

Exploiting the deterministic mean-field dynamics, we can
change the optimization domains in (7) from the policy
spaces to the corresponding reachable sets.

Jρ˚cor,tpµ
ρ
t , ν

ρ
t q “ rρt pµ

ρ
t , ν

ρ
t q (9)

` max
µρt`1PR

ρ
µ,tpµ

ρ
t ,ν

ρ
t q

min
νρt`1PR

ρ
ν,tpµ

ρ
t ,ν

ρ
t q
Jρ˚cor,t`1pµ

ρ
t`1, ν

ρ
t`1q.

For the rest of the paper, we will work with the above
reachability-based optimization problem. There are two ad-
vantages for such an approach: (i) the reachable sets gen-
erally have a lower dimension than the coordinator action
spaces1, which is desirable for numerical algorithms, and
(ii) the reachability-based optimization allows us to apply
Theorem 1 and study the performance loss due to the
identical-strategy assumption introduced by the mean-field
approximation.

Lipschitz Continuity of the Value Functions

To obtain performance guarantees for a finite-population
system, we need to first examine the continuity of the coor-
dinator game value. If the value function is not continuous,
a small disturbance in the EDs due to stochasticity may lead
to a performance that is drastically different from the mean-
field prediction.

Before analyzing the value function, we first study the
continuity of the two reachability correspondences under the
Hausdorff distance distH.2

Lemma 2: For all µt, µ1t P PpX q and νt, ν
1
t P PpYq, the

reachability correspondence Rµ,t satisfies

distHpRρ
µ,tpµt, νtq,Rρ

µ,tpµ
1
t, ν

1
tqq (10)

ď LRµ,t
`

dTV

`

µt, µ
1
t

˘

` dTV

`

νt, ν
1
t

˘˘

.

where the Lipschitz constant is given by LRµ,t “ 1`
1
2Lft .The Red reachability correspondence satisfies a similar
inequality with a Lipschitz constant LRν,t“1` 1

2Lgt .

1The Blue reachable set is a subset of
Ś

` PpX `q, while the Blue
coordinator action space is given by

Ś

`pPpU`qq|X
`|.

2The Hausdorff distance between sets A,B Ď X is defined as
distHpA,Bq“max

 

supaPA infbPB‖a´ b‖ , supbPB infaPA‖a´ b‖
(

.
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Fig. 1. Subplots (a)-(c) present the game values computed via discretization. The x- and y-axes correspond to µρt px
1q and νρt py

1q, respectively. Subplot
(d) illustrates the reachable sets starting from µρ0 “ r0.96, 0.04s and νρ0 “ r0.04, 0.96s.

Leveraging the continuity of the reachability correspon-
dences, the following theorem establishes the Lipschitz con-
tinuity of the optimal coordinator game value.

Theorem 2: For all µρt , µ
ρ1
t P PpX q and νρt , ν

ρ1
t P PpYq,

the lower coordinator game value satisfies
∣∣Jρ˚cor,tpµ

ρ
t , ν

ρ
t q ´ J

ρ˚
cor,tpµ

ρ1
t , ν

ρ1
t q

∣∣ (11)

ď LJ,t
`

dTV

`

µρt , µ
ρ1
t

˘

` dTV

`

µρt , ν
ρ1
t

˘˘

,

where the Lipschitz constant is given by LJ,t “ Lr
`

1 `
řT´1
k“t

śk
τ“tpLRρ

µ,τ
` LRρ

ν,τ
q
˘

.
Proof: Observe that the lower value in (9) takes the

form: fpx, yq “ maxpPΓpx,yqminqPΘpx,yq gpp, qq, which is
an extension of the maximization marginal function [8] to the
max-min case. Based on the continuity result for the max-
min marginal function, we can prove the theorem through an
inductive argument. See [9] for a detailed proof.

PERFORMANCE GUARANTEES

Recall that the optimal Blue coordination strategy α˚

is constructed for the infinite-population game where both
teams apply identical team strategies. The following main
theorem compares the worst-case performance of the iden-
tical Blue team strategy induced by α˚ (Remark 1) to the
original max-min optimization in (2), where non-identical
strategies are allowed.

Theorem 3: The optimal Blue coordination strategy α˚

in (8) induces an ε-optimal Blue team strategy. Formally, for
all joint states xN1 P XN1 , yN2 P YN2 ,

JN˚pxN1 ,yN2q ě min
ψN2PΨN2

JN,α
˚,ψN2

pxN1 ,yN2q (12)

ě JN˚pxN1 ,yN2q ´O
´ 1
?
N

¯

,

where N “ mintN1, N2u.
Proof: The first inequality in (12) is straightforward,

since α˚ is restricted to identical team strategy space.
The second inequality can be split into two lemmas: (i)
minψN2PΨN2 J

N,α,ψN2
ě Jρ˚cor´ε1, and (ii) Jρ˚cor ě JN˚´ε2.

Finally, one can show that both error terms are of order
Op1{?Nq. The proofs of both lemmas make uses of the
Lipschitz results of Jρ˚cor (Theorem 2) and the approximation
result (Theorem 1). See the full version for more details [9].

In other words, the above theorem states that the Red team
can at most gain an ε performance increase through using a
non-identical team strategy, even if the Blue team assumes
that both teams are restricted to identical strategies. As a
result, the above theorem significantly reduces the search
space for ε-optimal strategies under a ZS-MFTG formulation.

NUMERICAL EXAMPLES

Numerical Example 1
This example is used to demonstrate the reachability-

based optimization scheme and show that the coordinator
game value may not always exist, contrary to the continuous
setting [10]. For simplicity and visualization purpose, we
consider two homogeneous teams, each only has a single
sub-population, and the individual state spaces only consist
two states (i.e., X 1 “ tx1, x2u and Y1 “ ty1, y2u). We drop
the superscript ` and m for the rest of this example. See the
full version in [9] for the detailed setups.

The coordinator game values in Fig. 1 are computed
through discretization, where we uniformly mesh the two-
dimensional simplexes PpX q and PpYq into 1000 bins.

Since the value function Jρ˚cor,1 is not convex-concave, the
Nash equilibrium does not exist and the upper and lower
game values differ at t“0 as shown in Fig. 1(a). Specifically,
at µρ0“r0.96, 0.04s and νρ0 “r0.04, 0.96s, we have the lower
value Jρ˚cor,0 “ 0.5298 and the upper value J̄ρ˚cor,0 “ 0.5384,
which are visualized as the green and yellow points. The
reachable sets from µρ0 and νρ0 are plotted in Fig. 1(d) and
also visualized as the box in Fig. 1(b), which serve as the
optimization domain in (9) at t “ 0. Fig. 1(c) presents a
zoom-in for the optimization and the marginalized functions.

The red line in Fig. 2 shows the performance loss of the
proposed identical Blue team strategy in a finite-population
game, when the opponent team uses a non-identical team
strategy to exploit. It verifies the claim of Theorem 3.
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Fig. 2. Performance loss of the optimal Blue coordination strategy.



Numerical Example 2

We consider a simple defense scenario on a graph with
two nodes (N1 and N2) as in Fig. 3, where Node 2 (N2)
is a high-value target to be guarded. The Blue team is the
defending team and consists of two sub-populations: type-1
(blue) and type-2 (cyan). The Red team is the attacking team
and is homogeneous. The running reward is the difference
between the numbers of Blue agents (both types) and Red
agents on N2, so that the Blue team tries to maintain a
numerical advantage over the Red team at N2. While the
type-2 Blue agents can freely move on the graph, the type-1
agents can only move from N2 to N1, meaning that once
a type-1 agent is "committed" to N1, it cannot come back
to N2. The Red agents’ transition probability is influenced
by the distributions of the Blue agents: the more Blue
agents are presented on N1, the less likely a Red agent
can transit to N2 (the blocking effect); similarly, the more
Blue agents on N2, the less likely a Red agent can stay on
N2 (the fending effect). The blocking and fending effects
are saturated when the Blue team’s numerical advantage is
over a certain threshold. We assume that the type-1 Blue
agents are more effective in both blocking and fending off
the Red agents than their type-2 peers. For example, the
transition probability of a Red agent from N1 to N2 under
the "move-to-node2" action v is given by
g1,ρ
t p2|1, v, µ1,N1

t , µ2,N1

t , ν1,N2

t q “ max
 

0.1,

ρ1,N2ν1,N2

t p1q ´ 0.6ρ1,N1µ1,N1

t p1q ´ 0.4ρ2,N1µ2,N1

t p1q
(

,

where 0.1 is the transition probability after the Blue team
saturates the blocking effect.

As a result of the setup, a type-1 Blue agent needs to
decide whether it should migrate to N1 to impede the Red
team’s transition, or to stay on N2 for running reward and
fending off Red agents on N2.

In Fig. 3, we present the mean-field trajectories under two
different team size ratios. In the first scenario, we have four
times more type-2 Blue agents than type-1. Note that all cyan
agents migrate to N1 to block the Red team’s transition from
N1 to N2 at t“ 1. The cyan agents then use their mobility
and move back to N2 at t “ 2 to maximize the numerical
advantage at the terminal time step. To collaborate with the
type-2 agents and saturate the blocking effect on N1 at t“1,
20% of the type-1 Blue agents commit to N1, at the price
of less type-1 agents on N2 at t “ 2.

The second scenario has more type-1 Blue agents than
type-2. As the type-1 Blue agents are now the major force
in deciding the reward, keeping them on N2 for the running
reward out-benefits committing them to N1 for blocking, and
hence all type-1 Blue agents stay on N2. With no type-
1 agents going to N1, type-2 agents alone have limited
influence on the Red team’s transition. Consequently, the
type-2 Blue agents prioritize N2 at t “ 1 and saturate the
fending effect with 90% of the type-2 population. The rest
of the type-2 agents (10%) moves to N1 at t“1 to impede
the Red team’s transition. At the terminal time step, that 10%
of the type-2 agents return to N2 to maximize the numerical
advantage over the Red team.
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Fig. 3. A graph-based defense scenario. The sub-population mean-fields
are visualized as bars with bar length normalized according to ρ.

CONCLUSION

In this work, we have formulated a zero-sum game be-
tween two heterogeneous teams under the mean-field sharing
information structure. We approximated the team game with
an infinite-population game and further transformed it to an
equivalent zero-sum game between two coordinators. We
showed that even though the optimal strategies are solved
assuming that both teams employ identical team strategies,
the strategies constructed are still ε-optimal for the original
finite-population game and the general class of non-identical
team strategies. The derived performance guarantees are
verified through numerical examples. Future work will in-
vestigate the special case of the LQG setup of this problem
and deploy machine learning techniques to solve zero-sum
mean-field team problems in more complex environments.
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