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Abstract— Head-to-head autonomous racing is a challenging
problem, as the vehicle needs to operate at the friction or
handling limits in order to achieve minimum lap times while
also actively looking for strategies to overtake/stay ahead of the
opponent. In this work we propose a head-to-head racing en-
vironment for reinforcement learning which accurately models
vehicle dynamics. Some previous works have tried learning a
policy directly in the complex vehicle dynamics environment but
have failed to learn an optimal policy. In this work, we propose
a curriculum learning-based framework by transitioning from
a simpler vehicle model to a more complex real environment
to teach the reinforcement learning agent a policy closer to the
optimal policy. We also propose a control barrier function-based
safe reinforcement learning algorithm to enforce the safety of
the agent in a more effective way while not compromising on
optimality.

Index Terms— Reinforcement learning-based control, head-
to-head autonomous racing, game theory

I. INTRODUCTION

There has been a growing interest in autonomous racing
research in recent years [1] also accelerated by competi-
tions such as RoboRace [2], FlTenth [3], and the Indy
Autonomous Challenge [4]. Professional human race drivers
operate to follow racing lines to achieve optimal performance
and tend to outperform opponents while adhering to the
racing rules. Prior works in autonomous racing tend to ignore
the latter and only consider collision avoidance. It is difficult
to inculcate these complex rules and design a classical
rule-based controller which takes care of all scenarios and
tackles a wide range of opponent behaviors. Most previous
reinforcement learning (RL)-based works tackling this do not
include racing line information in the framework [5] [6], due
to which it becomes difficult for the learning agent to learn
an optimal policy which can be generalized to other tracks.
Also, training an agent directly on a complex racing envi-
ronment with complex vehicle dynamics debars the learning
agent from learning complex behaviors like skidding. In this
work, we propose a complex racing environment which can
be used to train head-to-head RL agents to learn an optimal
policy for competing with the opponents. Then, we propose
a curriculum learning-based framework which transitions the
vehicle model from a simple to a more complex one to tackle
the problem of this sub-optimality. Some works [7] also use
Control Barrier Functions (CBFs) as a shield while learning,
which has also been proven to boost the safety performance.
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However, these safety constraints may debar the agent from
learning a high-performant policy, especially in competitive
environments like ours where performance is also a primary
concern alongside safety. In this work, we also propose a
curriculum learning-based CBF framework to enforce safety
during learning while not compromising on the optimality of
the final learned policy. We gradually remove the CBF inter-
ference with the policy as the agent progressively learns to be
more safe, hence focusing on improving performance next.
We test our controllers against baselines by performing head-
to-head races with other baselines. We briefly summarize
our contribution as follows: 1) We propose a head-to-head
racing environment which models complex vehicle dynamics
and collision among agents or with walls; 2) We design
an effective hierarchical controller which includes racing
line information inside the hierarchical controller to train an
optimal policy; 3) We design a curriculum learning-based
framework which effectively enables learning an optimal
policy for the agent.

The rest of the paper is organized as follows: Section
IT briefly discusses the previous related works. Section III
presents the problem formulation. Section IV elaborates on
the proposed framework. The simulation results are presented
in Section V. The concluding remarks and future work can
be found in Section VI.

II. RELATED WORKS

Autonomous racing has received a lot of interest from
the research community recently at all levels of the stack
including the perception, localization, path planning and
control, as discussed in this literature review paper [1]. We
specifically focus on the path planning and control level of
the stack. Most recent works focus on optimizing lap times
for a single agent, with very recent works addressing multi-
agent planning and control.

For single-agent, most works propose calculating an opti-
mal racing line offline and using a control algorithm to run
on it as a reference online. [8] propose IPOPT optimization
to compute the racing line while [9] proposes Bayesian
optimization to obtain the racing line. [10] calculates a
minimum-curvature path which is very close to the optimal
line. [11] proposes using an LQR controller to track the
racing line. [12] [13] proposes a discrete MPC controller,
while [14] proposes a model predictive contouring controller
(MPCC). There also have been some recent works to account
for model and environment uncertainty [15] and some [16]
[17] to account for model changes online. Several works
proposed to use reinforcement learning [6] [18] and imitation



learning [19] [20] to control a vehicle around the track with
the objective of minimal race times.

For multi-agent racing control, there are works [21] [22]
on using rule-based strategy selection and using high-level
path planner/low-level control to execute strategies like over-
taking, blocking, collision avoidance, etc. However, these
works rely on a lot of parameters and it always difficult to
find an optimal set of parameters to work on all track maps
and environments. Some works use game theoretic planning
followed by classical control [23]. Some recent works like
[5] [24] use reinforcement learning to effectively learn an
end-to-end controller that learns to win the race and thus
learns certain strategies to do so. The environments used
to train the RL agent(s) can be varied with different maps,
surfaces, etc. to learn a widely generalizable policy. However,
these works still struggle in learning an optimal policy. Some
works like [5] use a simple kinematic vehicle model to train
and test the RL policy with other classical approaches. In
this work, we propose a complex racing environment with
a dynamic vehicle model with challenging parameters close
to the actual racing car to train and test the RL controller.
We also propose a curriculum-based course to train the RL
agent that helps in learning a better policy.

III. PROBLEM FORMULATION

We first present our dynamic game formulation. Let there
be 2 players ¢ and j racing against each other over 7' time
steps. The track is defined by a sequence of k checkpoints
along the center, {c;}7_,. The objective for each player is to
minimize the time difference between it and its opponent in
completing the final lap defined as c. Let 7; be the earliest
time step when a player ¢ reaches a checkpoint. Let the state
of the vehicle be 2; € X C R® and control action at each
time step be u; € U C R2?. Let r; € 1,2...k be the index of
the last checkpoint passed by the player. Let p : S — C' be
a function mapping a state s to a checkpoint. Also, we must
ensure the state s; is always within the track boundaries, i.e.,
q(s¢) < w where q is a function for the closest distance to the
center line and w is the track width, assumed to be constant.
For collision avoidance, let d : X * X — R be a function
that returns the shortest distance between bodies given the
2 vehicle states as d(si,s]). Based on these variables, the
objective for agent ¢ is given as:

min
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This formulation is similar to [5] except for the transi-
tion model f. For more details, readers are referred to it.
The dynamic bicycle model is used to define the model
transition f. The dynamic model state s; is defined with
global coordinates x, y, and yaw rotation ¢ in the global

frame; longitudinal velocity v, lateral velocity v, and yaw
angular velocity w in the vehicle’s body frame. Throttle d
and steering & define the action space of the model. F; ,
is the longitudinal force on the rear tire in the tire frame
assuming a rear-driven vehicle, Fr, and F;., are the forces
on the front and rear tires, respectively, and oy and v, are the
corresponding slip angles. We denote the mass of the vehicle
m, the moment of inertia in the vertical direction about the
center of mass of the vehicle I, the length of the vehicle
from the COM (center of mass) to the front wheel I, and
the length from the COM to the rear wheel I,.. By, Cy /o
Dy, are the Pacejka tire model parameters specific to the
tire and track surface. For longitudinal force, C,,1, C),2 are
known constants obtained from the gear model and C,.,Cy
are aerodynamic force constants which are learned from
vehicle interactions. Mathematically, the vehicle model f is
defined as follows:
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IV. HIERARCHICAL CONTROL DESIGN

Similar to [5], we also propose a hierarchical design
with a high-level planner returning a discrete checkpoint
plan followed by a low-level controller to track the planned
checkpoints. Having a decoupled planning approach helps
to achieve long-term plans like overtaking. As discussed
in detail in [5], directly executing reinforcement learning
strategies as a single controller may not allow reliably
meeting all the constraints or is not strategically optimal in
the long run.

A. High level planner

The high-level tactical planner approximates the general
game formulation discussed earlier into a simpler discrete
form. This discrete game formulation requires 2 components.

1) State space model: We first transform the continuous
state of the vehicle into a discrete state. We convert the
position of the vehicle into a pair of discrete variables,
i.e., lane ID and last passed checkpoint velocity, the latter
converted to a range with suitable window size. Tire wear is
also contained within a range. An example of a continuous
state conversion to discrete state is shown in Fig 1.

2) Dynamics transition model: We need a transition
model to define the transition between 2 states. If the
transition is possible such that all the continuous states from
the current state are able to reach at least one state on the
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Fig. 1: Converting a continuous state to discrete state

next state, then the transition is deemed to be feasible. If
all the boundary conditions are not satisfied, we rule out
the transition. In our update implementation, we use simple
one-dimensional equations of motion to determine current
time state by taking the mean of the velocities in the range
of the initial and final state [25]. For every state transition,
the longitudinal segment is incremented strictly by 1. The
number of lane changes can be used to formulate a penalty
on changing lanes too frequently on straights, which we will
discuss later.

The game is played with both players starting at an initial
checkpoint and progressively updating each player’s choices
with the smallest time state at each point. A lower time
state value implies that the player in question reached the
particular checkpoint before the other player and hence gets
to choose the next action. This gives the other player a chance
to make a resultant strategic action, like whether and how
to overtake, etc. A collision avoidance rule is incorporated
in the high-level planner by restricting actions that result
in the same checkpoint and the same lateral lane with time
difference less than m7T'.

3) Solution: The high-level problem of minimizing time
w.r.t. the other agent is solved using monte-carlo tree search
(MCTS). The optimal performance is defined as follows:

i=b—1
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where o; is the optimal lane and X is the high-level state
at the " checkpoint. The optimal lane is obtained from
the optimal racing line. The optimal racing line is obtained
from [8] by computing the time-optimal trajectory with the
given vehicle model parameters. The optimal lane at each
checkpoint is obtained by finding the (segment,lane) pair at
which the racing line passes. The solution from MCTS is a
series of discrete states both for the player and the adversarial
opponent. Note that we assume that the opponent is optimal
here, i.e., it too tries to achieve optimal performance. The
formulation for MCTS is similar to [5S] except that the
optimal solution is defined by staying closer to the racing
line rather than minimizing time. We believe this leads to
a better optimal solution, as explained in Section V. Figure
2 shows path planned from the 2 approaches. On choosing
minimum time difference as the criterion for a solution, the

trajectory comes out to be Figure 2a, which is closer to the
inner boundary, as it covers less distance, but would take a
longer time in the long run. Figure 2b, however, shows a new
optimal trajectory along the racing line which yields shorter
lap times in the long run.

(a) (b)

Fig. 2: High-level plans for (a) min. time cost (b) min.
distance to raceline cost

B. Low level controller

The aim of the low-level controller is to execute the high-
level trajectory plan. The low-level controller is typically an
RL controller which takes the current state as an input and
outputs the control command.

1) Reward design: The reward for the low-level controller
is defined by the distance to capture the following objectives:

1. Reward for passing through a checkpoint and additional
reward for passing through the target lane and through the
target speed : ktargete’dfc where d;. is the distance from the
target checkpoint

2. Reward for minimizing time between passing 2 check-
points : —kugme At where At is the time difference between
passing 2 checkpoints

3. Negative reward for swerving too frequently on straights
: —kswervel(z,y)es Where S is the set of straight section
checkpoints

4. Negative reward for colliding with the wall. We use an
indicator function 1;,<pur; hit wan that determines if the j”"
LIDAR reading is less than h and if LIDAR bounced off the
wall : — Z?Zl Ewannit 11, <huI; hit wall

5. Negative reward for collision with other players. We
use the indicator function 17, <pur; opponent tO check if the
jth LIDAR reading reads hitting the opponent and we
have a set ¢ containing all LIDAR rays that point to the
front of the car for which we impose additional penalty :
- 22:1 kopp,l 1Ij <hUI; opponent + kopp,lej <hUI; opponentUj€E ¢

6. Negative reward for braking unnecessarily, i.e., when
speed is lower than the target window, high lateral slips :
Fbrake Lo <vggeud<0 + kslip(a?‘ +a?)

2) Network architecture: PPO RL algorithm is used to
obtain the optimal policy. The neural network used for
estimating the value function and the policy is a simple
feedforward neural network with 8 layers and 128 neurons
on each layer, as shown in Fig. 3. There is a Tanh layer
at the end to restrict the output steering and throttle to their
ranges. Both the steering and throttle are obtained from the
output by scaling them by their ranges. The input consists
of the following values: 1. The dynamic state of the vehicle
consisting of (vz, vy, w); 2. The Frenet frame state w.r.t. the
racing line reference, i.e., signed lateral distance from the
racing line ej, relative angle w.r.t. the closest point on the
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Fig. 3: Training environment

racing line es; 3. Relative position of the opponent vehicle;
4. Discrete high-level target state. All the values within the
range are passed by the average of the lower and upper limits
5. Raw Lidar data consisting of distances at 32 rays cast from
the extreme left of the car to the right.

3) Training environment: Training is conducted on 16
parallel tracks (8 clock-wise and 8 counter-clockwise) so that
the agent does not overfit to one side. Also, for each side,
4 environments have steeper turns and 4 moderate turns, as
shown in Fig. 3.

C. Curriculum learning

With the problem formulation and the hierarchical control
design in place, we now define the proposed curriculum
learning framework to progressively teach the RL agent an
optimal policy. Let us define a parameter t; denoting the
time scale. We vary ¢, as:

t— tslart >>
- tslart

1) Vehicle model transition: The dynamic model defined
in 2 makes it very difficult for the RL agent to learn an
effective policy, as it is very difficult to learn to move
at optimal speeds while respecting the friction limits and
skidding caused due to high lateral slips at higher speeds.
Hence, we define a transition from a relatively simpler
dynamic model which is close to the kinematic model (very
few slips at the same speeds and much higher friction limits)
to the complex model with the actual parameters. The tire
model Pacejka parameter changes are defined as follows:
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Fig. 4: Tire curve variation for curriculum learning

2) Safety CBF transition: We also define a safety Control
Barrier Function (CBF) to shield the agent while learning
similar to [26]. We observed that the RL agent struggles a
lot at the beginning hitting the walls as it tries to understand
the environment. Hitting the wall once debars the agent from
learning meaningful behavior later in the episode, as it gets
stuck at the wall. To get rid of this, we define a safety CBF
for the wall boundary constraints which overrides the RL
controller by the minimum amount required to avoid hitting
the wall. For more rigorous details on the CBF, readers are
referred to [27]. We define the CBF function h and the 2"
order CBF as follows:

hrighl(x) = —€center T W
hrighl(x) = —v, Sin(f — Orer) — vy c0OS(0 — Orer)
ﬁrighl(x, u) = —0y SIn(0 — brer) — Dy cOS(O — Orer)

— W.(Vg cO8(0 — Oref) — vy SIN(O — Orer))
hleft(x) = €center T W
et () = vg SIN(6 — Orer) + vy cOS(6 — brer)
iefi (2, w) = Uy SIN(O — Orer) + Uy cOS(0 — brer)
+ w. (Vg co8(8 — Orer) — vy sIn(f — Orer))
Finally,
Oﬁght(xa u) = HlaX(O, )‘1>\2}‘lright + (Al + )\Z)ilright + hright)
Creri (2, v) = max(0, Ay Az hiere + (A1 4 A2) et + Pier)
A, = Ar0(1 —ts)
Ao, = Ag0(1 —ts)
(6)
The updated command is obtained via the following opti-
mization process where Ko is typically set to a very high
value and wu.r is the reference control command before the
change:

mgn(Kviol(CrQighx + Clzeft) + Ju — uref|2) (7)
We also add a negative reward for constraint violation as

follows:



2 2
Rconstrainl = kconstraint(crjght + Cleft) (8)

Higher values of A\; and Ay imply higher interference
from the CBF, as the constraints get activated even when
the agent is far from the wall, while lower values imply
less interference. As the RL agent is more prone to make
collisions at the beginning, higher values of A; and A2 enable
the agent to learn quickly to move along the safer centerline
so as to avoid any violations. We vary the parameters of the
CBF as follows:

A, = Ao(l —ts)
>\2,ts = /\2,0(1 - tS)
V. RESULTS

9)

Our framework is implemented in the Unity Game Engine,
with an example representative image shown in Fig. 6. We
test our controllers on 2 track maps, as shown in Figure
6. We conduct test races on this track against 2 agents to
compare with them. The races are conducted with initial
position set randomly either on the left or the right at the
starting line with both starting at the same longitudinal level.
One position may be at an advantage if it is closer to the
racing line. Hence, we randomly choose the positions with
an equal chance of getting either position. We first give
training rewards obtained by curriculum learning to show
the advantage of using curriculum learning in Fig. 5b. As
can be observed, using curriculum learning clearly with only
model changes clearly beats the rewards without using it.
tstarr @and tepg are chosen to be 500000 and 1500000. It is
unfair to compare till 1500000 steps, as the first controller
runs on a simple RL environment, but after 1500000 steps
both environments are the same and our controller clearly
beats the non-curriculum-based RL controller in reward.
Also, the number of wins with 4 races each between 3
pairs of agents (so effectively 12 races) conducted every
250000 steps clearly shows our controller wins most races
at all times. With the CBF-based curriculum added, due to
negative reward for each CBF constraint violation, the reward
is less at the beginning but it eventually improves at the end,
achieving an even larger reward. Also, it is slightly better
than only using model-based curriculum learning in terms
of the number of races won.

1o of wins.

000 025 050 075 100 125 130 175 2.00
steps 1e6

(a) (b)

Fig. 5: (a) Training rewards (b) No of wins across training
steps
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Fig. 7: The race win statistics

Finally, we conduct races among other baselines for com-
parison. All races consist of 3 laps, with the car which
crosses the finish line first after 3 laps winning the race. In
total 20 races are conducted with each pair for comparison.

A. Metrics

We compare the runs against the following metrics: 1. No.
of wins; 2. Average lap time; 3. Average lateral distance from
race line; 4. No of collisions with wall; 5. No. of collisions
with opponents from behind.

B. Baseline methods

We compare against the following baselines: 1. Ours 2.
Ours - CBF 3. [5] : Ours - raceline, curriculum learning
4. MCTS + LQR : To compare against a classical rule-
based controller 5. End-to-end : Not using any hierarchical
controller

Fig.6 contains the win statistics for all methods. As can
be observed, Our Method beats all other methods in most

Avg. lap | Avg. lateral No of collisions
time distance from Wall | Opponent
(in s) raceline (in m)

Ours 28.8 1.03 250 85

Ours - CBF 29.2 1.05 360 92

Ours - raceline, 1 g 5 1.80 589 | 78

curriculum learning

MCTS + LQR 29.6 0.53 212 64

End to end 30.3 1.67 670 56

TABLE I: Race statistics of different methods



races. Especially with races against [5], we observe that using
racing line information and our proposed curriculum learning
approach is beneficial as compared to training without them.
Table I contains all the other statistics. As can be seen,
we achieve better lap times as compared to other methods.
Also, we stay much closer to raceline as compared to
[5] after adding explicit raceline state as input. However,
using classical control like LQR is able to achieve better
raceline tracking but may not be able to achieve optimal
speeds as the RL controller does. Also, clearly, using the
hierarchical controller yields better results than direct End-
to-end approach as it looks from the average lap time. In
terms of the no of collisions, it suggests that using CBF
based curriculum helps the agent in learning more robust
safety as it has fewer collision with wall as compared to not
using CBE.

VI. CONCLUSION AND FUTURE WORK

In this work we propose a more realistic head-to-head
racing environment to race against with more closer to actual
dynamics as compared to [5]. We then propose a hierar-
chical control design with a high-level controller planning
a sequence of checkpoints as close to the racing line as
possible and avoiding collision with other agents. We then
propose a curriculum-based learning method to effectively
learn an optimal policy. We compare the results with other
baseline methods. It is important to note here that this is
a work in progress and we admit that the experiments and
inferences are incomplete (for example, comparison with an
RL controller trained with constant CBF parameters should
have been added to compare with [5]). This is because
we were not able to complete all experiments before the
deadline. In the near work, we aim to also use trajectory
prediction for the opponent agent instead of MCTS. We also
aim to test against more complex environments where the
agents would be allowed to take a pit stop for tire changes
due to wear and more agents can be added into the game.
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