
Learned Objectives for Game Theoretic Planning

Keiko Nagami*1, Jaden Clark*2, Mac Schwager1

Abstract— Modeling multi-agent motion planning problems
as dynamic games allows agents in the system to leverage the
objectives of non-cooperative agents in their own planning.
Using this approach has been shown to improve performance
over methods that do not solve dynamic games in non-
cooperative, competitive examples such as lane merging and
racing. Unfortunately, many existing game theoretic planning
algorithms can require long computation times, preventing real
world implementation. Furthermore, most algorithms assume
knowledge of the objective functions of other agents in the
system. Methods that do not make this assumption will often
assume the structure of the objective function, and assign
parameters that best represent the agent’s behavior. However,
this approach can be limiting in cases where the underlying
objective does not match the assumed form. To address these
challenges, we propose a method that uses a neural network to
predict trajectories of players in a game. This output trajectory
is then used to define a tracking cost that represents the
objective of each player in the game. From here, traditional
model-based game theoretic planning approaches can be used to
compute the Nash equilibrium trajectories for all players in the
system. We demonstrate our approach in a racetrack simulation
environment, and show that our learning-based method is able
to closely match the trajectories formed in the case where the
ground truth objectives are known.

I. INTRODUCTION

In many real-world applications of autonomous systems
such as self-driving cars, mobile robot navigation in crowds,
and autonomous racing, the interactions among agents play
a crucial role. Specifically, the autonomous agents deployed
in the real world must interact with other non-cooperative or
competitive agents, without direct communication.

Traditional planning approaches often adopt a predict-
then-plan architecture, where other agents’ trajectories are
predicted and treated as fixed obstacles in the planning
process. This method can be effective in cases where other
agents in the system are largely static, far from the ego agent,
or relatively slow moving. However, this approach may be
insufficient when the other agents in the system are reacting
to actions of the ego agent, navigating in close proximity, and
even trying to prevent the ego agent from reaching its goals.
Disregarding the influence of the robot’s own trajectory on
other agents and can lead to suboptimal or even unsafe plans,
as it fails to capture the reactive nature of the agents in the
environment. In such cases, game theoretic planning offers a
valuable framework for identifying solution methods to these
complex decision-making problems.

*Authors contributed equally
1Department of Aeronautics and Astronautics, Stanford University, Stan-

ford, CA 94305, USA, {knagami, schwager}@stanford.edu
2Department of Computer Science, Stanford University, Stanford, CA

94305, USA, jvclark@stanford.edu

Fig. 1. Autonomous vehicles deployed in the real-world must be robust
to complex interaction with non-cooperative agents in the system.

Game theoretic planning provides a more comprehensive
and dynamic approach by considering all agents as players
in a game. This way, agents can strategically reason about
their decisions, taking into account the potential strategic
reactions of other agents. In this paper, we approach the
task of solving for a Nash equilibrium, where no player
can unilaterally improve their outcome. While game theoretic
planning shows promise for addressing multi-agent planning
problems, it also presents challenges. Dynamic games are
inherently more complex to solve than single-agent optimiza-
tion problems due to the involvement of multiple players
with potentially competing objectives. Furthermore, finding
equilibrium solutions in these games is not guaranteed, even
in simple scenarios [1]. This nonexistence of equilibria adds
to the complexity of solving dynamic games.

In solving for Nash equilibria of multiple agents in a
game, a key component is the objective of each player in
the system. Many existing methods assume that the objective
function of each player is known. However, this assumption
may not always hold. Methods to estimate the objective exist
but enforce a structure to the objective function, which may
not adequately represent the underlying function.

An alternative approach to using game theoretic planning
methods is to use learning-based methods. Imitation learning
and reinforcement learning techniques have become increas-
ingly common approaches to solving robotic motion planning
problems [1]. Learning-based approaches, have gained sig-
nificant interest in autonomous driving due to their potential
to handle the complexity of interactions in dense urban
environments with small online computational complexity.
Traditional motion planning methods often struggle in such
scenarios, as they require defining complex cost functions



that align with human expectations. Imitation learning, on the
other hand, leverages expert demonstrations to learn either a
cost function or a policy directly, making it well-suited for
handling diverse driving situations.

One key benefit of learning-based approaches is the reduc-
tion in manual parameter tuning. Instead of iteratively tuning
each parameter of a cost function while trying to maintain
performance in all foreseeable scenarios, deep learning al-
gorithms can learn appropriate parameters from data. This
allows the system to adapt to different driving conditions
without extensive manual tuning. Another advantage is the
potential for end-to-end learning. In some approaches, the
system learns to map observations directly to low-level
vehicle control interface commands, eliminating the need for
explicit modeling or hand-engineered features [3]. This can
simplify the overall system architecture and potentially lead
to more robust and adaptable control. However, evaluating
such policies is challenging. While model-based approaches
explicitly enforce constraints on the trajectory they produce,
constraining neural network outputs is more challenging.
Particularly in the case of distribution shift, when the driving
scenario deviates significantly from those demonstrated by
the expert, learned driving policies may produce dangerous
or dynamically infeasible control actions [4].

In this paper, we present a method that fuses both imitation
learning and game-theoretic trajectory optimization. In this
work, we consider the case where the opponent’s objectives
are not known apriori and must be learned offline through
interactions with the ego agent. By learning from an agent
planning over a longer horizon, we will be able to instill
longer horizon planning information into the planner for the
learning agent, even if this agent plans a shorter trajectory.
This decreases online runtime complexity of our algorithm.
Furthermore, we will simultaneously learn to predict trajec-
tories of other agents. By predicting trajectories as opposed
to parameters of an objective function as typically done in
inverse reinforcement learning, the agent can predict paths
of other agents with arbitrarily structured objectives, thus
eliminating much of the cost-function fine-tuning associated
with model-based trajectory optimization.

The main contributions of this work are as follows:
• A formalized game theoretic framework to ground neu-

ral network policy-generated waypoints with trajectory
optimization

• Demonstrate that learning from agents using long-
horizon planning can decrease online planning horizon
for agents executing game-theoretic MPC online

• Show that a prediction network that outputs multi-agent
trajectories can be used in place of a fixed “goal state”
for objective of agents

II. RELATED WORKS

A. Game-Theoretic Approaches

Recent work in game-theoretic planning have explored
various approaches for equilibrium selection. One class of
equilibrium selection is the Stackelberg equilibrium, which

assumes asymmetry between players. Several studies have
focused on searching for Stackelberg equilibria [5], [6],
where a leader player chooses a strategy first, and a follower
player responds accordingly. However, this approach can lead
to overly aggressive or passive behavior due to asymmetry
[1]. Alternatively, Nash equilibria assume symmetry between
players. The Nash equilibrium strategy is defined as the set
trajectories where each player’s strategy is unilaterally the
best response. In other words, any given agent’s objective
can not be improved without changing the strategy of other
agents. Nash equilibria are more suitable for symmetric,
multi-player interactions and have shown to produce more
natural behavior compared to Stackelberg equilibria when
solving for open-loop strategies.

In solving for Nash equilibria, a common approach is to
use iterative best response. In these algorithms, the solver
iteratively optimizes for each player’s objective, while hold-
ing the decision variables of the other players constant, as
done in [7], [8], [9], and [10]. These approaches are easy to
interpret and scale reasonably well with the number of agents
in the system. They also do not require the cost function to be
quadratic. However, convergence of these algorithms is not
properly understood, and can have long computation times.
Other approaches enforce a quadratic objective function for
all players in the game, and are able to generate solutions
for real time planning [2], [11], [12].

B. Inverse Solutions

In this work, we focus on problems where the objectives
of other players in the game are unknown. Objective func-
tion estimation methods, such as Inverse Optimal Control
(IOC) or Inverse Reinforcement Learning (IRL), aim to infer
the underlying objectives or preferences of agents based
on observed behavior. These approaches are well-studied
and have been extensively applied in single-agent settings.
Typically, the objective function is assumed to be linear with
respect to a set of predefined state features [13]. The goal
is to estimate the weights or parameters that best align the
estimated objective with the observed behavior.

Traditional IOC and IRL methods have mainly been
developed for discrete state and action spaces but can also
be extended to continuous settings, as seen in robotics
problems. However, these works primarily focus on single-
agent scenarios. In the multi-agent setting, some approaches
consider cooperative or competitive agents and have been
demonstrated on discretized state and action spaces [14].
More recent works have explored the multi-agent competitive
setting with continuous state and action spaces, particularly
in linear-quadratic games with low-dimensional states and
control inputs [11].

Instead of offline estimation, where a parameter vector is
identified from a set of complete trajectories, some works
aim to perform online estimation as an agent within the
game [11]. This means using only knowledge from the
previous state to estimate the objective function and inform
future actions, considering limited demonstration data and
real-time execution constraints. This formulation is better



Fig. 2. We train an MLP based on long-horizon planning data (left). The output of the MLP is used for shorter-horizon planning (right). This plot (left)
shows 20-step trajectories solved for during training using [2] for 3 agents. Points along the trajectory are plotted in Cartesian coordinates. This trajectory
has a fixed goal state (red). During policy execution (right), the solver tracks a goal trajectory (ego goal trajectory in red) that is the output of our imitation
learning policy.

suited for the online prediction-planning pipeline associated
with dynamic games. However, this method is limited in
that it still assumes some inherent structure of the objective
function. For example, in this work, they assume a quadratic
objective function with fixed goal state.

C. Learning-based Methods

In using learning-based methods, neural networks can be
leveraged as function approximators for various parts of the
planning pipeline. In Multi-Agent Reinforcement Learning
(MARL), the policy followed by the ego agent is often
represented as a neural network that is trained from data ob-
served by interacting with opponents, as done in [15]. Other
works introduce an offline learning phase in conjunction with
model-based game theoretic planning methods. For example
[10] warm-starts their iterative best response scheme with
a learned trajectory “guess”. Alternatively [16] introduces a
lifted trajectory game formulation addressing the complexity
and uniqueness issues in multi-agent interactions by offload-
ing the computational complexity to an offline training phase.
By introducing auxiliary trajectory references and reference
generators, the formulation reduces the runtime computation
to single-agent trajectory optimization problems, which can
be solved in parallel. The trained reference generators ap-
proximate solutions to the game by evaluating the references,
solving trajectory optimization problems, and computing the
bimatrix game. This approach enables efficient real-time
decision-making in multi-agent scenarios while significantly
reducing computational complexity. However, it still assumes
a given objective function and structure.

In this work, we use a combination of learning-based

methods and game theoretic planning to predict the objec-
tives of other agents in a game, and plan using these predicted
objectives. To do this, we train a neural network on trajectory
data of all players. The neural network takes an input of the
joint state of all agents in the system at the current time
step and predicts the trajectories that all agents will follow in
the proceeding time steps. From here, we construct objective
functions for each player in the game as a tracking cost to the
predicted trajectories. Finally, we use [2] as a game theoretic
solver to get trajectories that satisfy a Nash equilibrium to
the approximated objectives.

III. PROBLEM STATEMENT

We consider a scenario in which multiple players of a
game have ground truth full state information and dynamics
of themselves and all other players. We define the state vector
of player ν at time step k as xν

k and the corresponding control
vector as uν

k . We further define the joint state and control of
all players by removing the superscript to denote the player
index:

xk =
[
(xν=1

k )T . . . (xν=p
k )T

]T (1)

uk =
[
(uν=1

k )T . . . (uν=p
k )T

]T
, (2)

where p is the number of players in the game. The joint
dynamics of the system evolve as:

xk = f (xk−1,uk). (3)

The objective of the ego agent is known, however the
objectives of the other players are assumed to be unknown.
Instead, we only have access to expert demonstrations of



agents interacting in the form of trajectory data. We denote
the ego agent as ν = 1, and additionally define the final time
step of the system’s trajectory as K.

IV. APPROACH

We ground imitation learning with game-theoretic trajec-
tory optimization. To do so, we train a policy to output an
optimal trajectory for all agents in the system. Then, we use
this trajectory as the goal trajectory over a fixed planning
horizon. A dynamic game is then solved given these goal
trajectories. Fig. 3 shows our method.

Fig. 3. We train an MLP to predict the joint trajectory of a system of
agents to formulate a tracking objective that is used in a game solver.

A. Learning Objectives with Prediction Network

As described in Section III, we assume access to a dataset
with expert demonstrations of agents interacting in the form
of trajectory data. With this dataset, we train a neural network
to map between each state to the next N states in the
trajectory:

x̂ν=2:p
k=1:N = fθ (x

ν=1:p
k=0 ). (4)

We use supervised learning to train this trajectory predictor
with DAgger [17], rolling out the aforementioned supervised
learning trajectory, then mapping each state visited to an
MPC trajectory computed offline. These states are then added
to the dataset and a new trajectory generator is trained.

B. Game Theoretic Planning

This predicted trajectory output of our network is then
used as a tracking cost for a game solver [2]. Since we
assume no access to ground truth objective functions, the
following tracking cost is constructed using the neural net-
work output with the predicted objective:

minimize
xk=1:N ,uν

k=1:N

N

∑
k=1

1
2
(xk − x̂k)

T Q(xk − x̂k)+
1
2

uνT
k Ruν

k (5)

subject to xk = f (xk−1,uk) (6)
0 ≥ c(xk,uk), ∀k ∈ {1, . . . ,N}, (7)

where N is the predicted horizon length of the trajectory, Q
is a state cost matrix, R is a control cost matrix, and c(·) is
a collision avoidance cost both between agents and between
agents and the environment. With this predicted objective,
our approach can be used in scenarios where agents have
underlying ground truth objectives of varying structure.

V. RESULTS

A. Simulated Data Generation

We consider a setting where three players interact on a
circular track, and plan toward a single goal state that recedes
around the track as a function of the ego agent’s current state.
We use a state vector of position and velocity, and a control
vector of acceleration:

xν
k =

[
pνT

k vνT
k

]T
=
[
x y z vx vy vz

]T (8)

uν
k =

[
ax ay az

]T
, (9)

and use double integrator dynamics to propagate the states:

pν
k+1 = pν

k +vν
k ∆t (10)

vν
k+1 = vν

k +uν
k ∆t, (11)

where ∆t is the time step in seconds.
We generate a dataset using [2], where all three players

have the following ground truth objective:

Jν(xk=1:N ,uν
k=1:N) =

H

∑
k=1

1
2
(xk −xg)

T Q(xk −xg)+
1
2

uνT
k Ruν

k ,

(12)

where H is the planning horizon used by the ground truth
objective function during data collection, and xg is a goal
state that recedes around the track as a function of the ego
agent’s state. For the training dataset, we use H = 20. Full
state information is stored for all three players over 1000
K-step MPC rollouts. Our dataset maps ground truth joint
states, to the next N joint states for the multi-agent system,
defining a predictive horizon of N = 5.

B. Short Horizon Comparison

Fig. 4. LTT agents make more angular progress than GTP agents with
ground truth objective information. This shows that our offline training phase
with DAgger effectively imbues longer-horizon planning information into
the short-horizon planning during policy execution.

We compare performance of an agent using our method,
which we denote LTT for Learned Trajectory Tracking, to
an agent planning with standard Game Theoretic Planning
(GTP) as described in [2]. LTT is trained from trajectories
with a horizon H = 20 using Model Predictive Control



(MPC). We first test LTT with an N = 5 predictive planning
horizon and compare to standard GTP with an H = 5
planning horizon during policy execution. We show that
LTT (which does not have ground truth objective function
information) on average progresses 101.15 degrees along the
circular track based on 1000 rollouts of MPC trajectories of
length K = 25, as compared to only 93.88 degrees for stan-
dard GTP, which has ground truth objective information. We
believe that LTT is able to outperform GTP because the long-
horizon planning it is trained off of imbues longer-horizon
information in the trajectories it tracks. This comparison is
shown in Fig. 4.

C. Long Horizon Comparison

Next, LTT is compared to GTP with varying planning
horizons during execution. LTT performs most similarly to
standard GTP with planning horizon of H = 20, when LTT
has planning horizon of N = 5 online. This makes sense,
because LTT was trained from trajectories planned with
H = 20. This is an important result because the GTP agents
have access to the ground truth objectives of the players
while the LTT agents must approximate the objectives. This
result is shown in Fig. 5.

Fig. 5. LTT with N=5 online MPC has similar performance to standard
GTP with H=20. Angular progress along the track is plotted as a function
of MPC step.

Finally, we tested the runtime complexity of our method.
On an M2 Mac, an H = 20 step MPC plan takes around
0.13 seconds to compute, whereas a H = 5 step MPC plan
takes about 0.025 seconds to compute. As these methods
have similar performance we find that LTT decreases runtime
by 80.9 percent.

VI. CONCLUSIONS

We present a formalized game theoretic framework to
ground neural network generated trajectories with trajectory
optimization. We show that learning from agents using long-
horizon planning can allow us to decrease online planning
horizons for agents executing game theoretic planning online.
Furthermore we show that using a prediction network that
outputs multi-agent trajectories can be used in place of a

fixed “goal state” for objective of agents. This offline training
phase is effective at imbuing long-horizon planning data into
a short-horizon online planning execution.

A feature of our method is that it can be combined with
other trajectory prediction frameworks, for which their is a
robust body of literature. While we use an offline training
phase with DAgger, we can use any architecture for trajectory
prediction, some of which may be better suited for different
problems.

In future work, we plan to test our method in cases
where the underlying ground truth objective does not have a
quadratic structure. We also plan to compare our method to
other objective-function estimation methods.

REFERENCES

[1] J. F. Fisac, E. Bronstein, E. Stefansson, D. Sadigh, S. S. Sastry, and
A. D. Dragan, “Hierarchical game-theoretic planning for autonomous
vehicles,” in 2019 International conference on robotics and automation
(ICRA). IEEE, 2019, pp. 9590–9596.

[2] S. L. Cleac’h, M. Schwager, and Z. Manchester, “Algames:
A fast solver for constrained dynamic games,” arXiv preprint
arXiv:1910.09713, 2019.

[3] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[4] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv
preprint arXiv:2005.01643, 2020.

[5] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “Information
gathering actions over human internal state,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2016, pp. 66–73.

[6] A. Liniger and J. Lygeros, “A noncooperative game approach to au-
tonomous racing,” IEEE Transactions on Control Systems Technology,
vol. 28, no. 3, pp. 884–897, 2019.

[7] G. Williams, B. Goldfain, P. Drews, J. M. Rehg, and E. A. Theodorou,
“Best response model predictive control for agile interactions between
autonomous ground vehicles,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 2403–2410.

[8] M. Wang, Z. Wang, J. Talbot, J. C. Gerdes, and M. Schwager, “Game
theoretic planning for self-driving cars in competitive scenarios.” in
Robotics: Science and Systems, 2019, pp. 1–9.

[9] R. Spica, E. Cristofalo, Z. Wang, E. Montijano, and M. Schwager,
“A real-time game theoretic planner for autonomous two-player drone
racing,” IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1389–1403,
2020.

[10] Z. Wang, T. Taubner, and M. Schwager, “Multi-agent sensitivity
enhanced iterative best response: A real-time game theoretic planner
for drone racing in 3d environments,” Robotics and Autonomous
Systems, vol. 125, p. 103410, 2020.

[11] S. Le Cleac’h, M. Schwager, and Z. Manchester, “Lucidgames: Online
unscented inverse dynamic games for adaptive trajectory prediction
and planning,” IEEE Robotics and Automation Letters, vol. 6, no. 3,
pp. 5485–5492, 2021.

[12] D. Fridovich-Keil, E. Ratner, L. Peters, A. D. Dragan, and C. J.
Tomlin, “Efficient iterative linear-quadratic approximations for non-
linear multi-player general-sum differential games,” in 2020 IEEE
international conference on robotics and automation (ICRA). IEEE,
2020, pp. 1475–1481.

[13] N. D. Ratliff, “Learning to search: Structured prediction techniques
for imitation learning,” Ph.D. dissertation, Carnegie Mellon University,
2009.

[14] K. Mombaur, A. Truong, and J.-P. Laumond, “From human to
humanoid locomotion—an inverse optimal control approach,” Au-
tonomous robots, vol. 28, pp. 369–383, 2010.

[15] M. Shen and J. P. How, “Safe adaptation in multiagent competition,”
in 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2022, pp. 12 441–12 447.



[16] L. Peters, D. Fridovich-Keil, V. Rubies-Royo, C. J. Tomlin, and
C. Stachniss, “Inferring objectives in continuous dynamic games
from noise-corrupted partial state observations,” arXiv preprint
arXiv:2106.03611, 2021.

[17] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
627–635.


