
A Preview of Open-Loop and Feedback Nash Trajectories
in Racing Scenarios*

Matthias Rowold1

Abstract— Trajectory planning for autonomous race cars
poses special challenges due to the highly interactive and
competitive environment. Prior work has applied game theory
as it provides equilibria for such non-cooperative dynamic
problems. This contribution introduces a framework to assess
the suitability of the Nash equilibrium for racing scenarios. To
achieve this, we employ a variant of iLQR, called iLQGame,
to find trajectories that satisfy the equilibrium conditions
for a linear-quadratic approximation of the original game.
In particular, we are interested in the difference between
the behavioral outcomes of the open-loop and the feedback
Nash equilibria and show how iLQGame can generate both
types of equilibria. We provide an overview of open problems
and upcoming research, including convergence properties of
iLQGame in racing games, cost function parameterization, and
moving horizon implementations.

I. INTRODUCTION

The complexity of considering interactions between au-
tonomous vehicles and their interactions with human agents
presents a significant challenge in trajectory planning. In
established sequential methods, the autonomous vehicle of
interest – hereafter referred to as the ego vehicle – is
concerned with predicting the most likely trajectories of all
relevant agents to react with a collision-free trajectory. This
is often sufficient, as applications have shown. However,
sequential approaches neglect the reciprocal nature of sce-
narios, meaning the other agents respond to the executed
motion of the ego vehicle, creating a bidirectional interde-
pendence. Planning approaches that consider and incorporate
this mutual dependency are categorized as interaction-aware.

Interaction-aware approaches promise to generate trajec-
tories with a lesser degree of conservatism compared to
sequential approaches. This means they are performant and
human-like even in environments with rapidly increasing
prediction uncertainties that, under a sequential approach,
would lead to overly cautious trajectories. By leveraging
the knowledge that other agents react to the ego vehicle,
including collision avoidance, interaction-aware approaches
can influence the other agents’ behaviors to a certain extent
to achieve more progressive and less risk-averse behaviors.
An application-oriented goal of interaction-aware planning
is to generate behaviors that are seamlessly integrateable
into traffic scenarios like lane changes [1], ramp merges
[2], or crosswalks [3], [4]. In addition to traffic, autonomous
racing is another domain that heavily relies on interactions.

*This work was not supported by any organization
1Matthias Rowold is with the Chair of Automatic Control, De-

partment of Mechanical Engineering, TUM School of Engineer-
ing and Design, Technical University of Munich, 85748 Garching
matthias.rowold@tum.de

In racing, strategies like overtaking, blocking, and faking
are common, requiring anticipating the opponent’s reaction
to the ego-trajectory to be successful and safe. A major
distinction to traffic scenarios is that the desired behavior
in racing is usually competitive, i.e., non-cooperative.

Interaction-aware planning approaches employ multi-agent
planning with a joint cost function, partially observable
Markov desicion processess, reinforcement learning, and
game-theoretical concepts. The latter seems especially fitting
for autonomous racing since game theory provides concepts
for non-cooperative behaviors in environments where the
agents cannot communicate. Furthermore, the objective of
each agent is similar and known. The goal is to maximize
speed and be ahead of the opponents, in contrast to traffic
scenarios with a wide range of objectives. Given that game-
theoretic concepts require assumptions about the cost func-
tions that govern the agent’s decisions, their use for racing
seems appropriate.

In this and the following work, we will analyze the
suitability of a game-theoretic concept, the Nash equilibrium,
for trajectory planning in autonomous racing. Our focus
lies on two types of Nash equilibria: the open-loop and
the feedback equilibria. Both types have been considered in
previous work, but they have not been compared regarding
their behavioral outcomes.

A. Related Work

Most game-theoretic planning approaches in traffic and
racing scenarios are concerned with finding trajectories that
fulfill the requirements of a Nash equilibrium. At a Nash
equilibrium, no agent, in the following called player, has
an incentive to alter its strategy unilaterally. Depending
on the information structure of the formulated game, one
obtains either the open-loop or the feedback solution. Each
player has to commit to a sequence of control inputs at the
beginning of the game for an open-loop solution. In contrast,
for a feedback solution, the players look for strategies that
allow them to react to the current state in each stage of the
game. A more detailed introduction to these concepts will
follow in Section III.

We categorize the existing approaches for game-theoretic
trajectory planning into the following groups:

1) Offline policy generation: Fisac et al. [5] discretize the
state space and determine the optimal policy for a feedback
Stackelberg equilibrium offline via dynamic programming.
This policy can be applied efficiently only, but the offline
calculations suffer from the curse of dimensionality, so only a
few players and coarse discretizations are possible. Bhargav



et al. [6] perform extensive offline computations as well.
However, they do not solve for equilibria, but policies with
a high probability of successful overtaking for different race
track positions.

Zheng et al. [7] formulate racing as a two-player zero-sum
game in extensive form and determine the optimal strategy
via counterfactual regret minimization.

2) Sampling-based: Liniger and Lygeros [8] formulate
bi-matrix games by sampling trajectory candidates for two
players. Solving these games for a Nash equilibrium results
in open-loop trajectories. Feedback is introduced when the
planning is performed with a receding horizon.

3) Iterative best response (IBR): In IBR approaches, the
players optimize their trajectories alternately while keeping
all other players’ trajectories fixed. If this algorithm con-
verges, no player is incentivized to alter its decision, making
it a Nash equilibrium. Sensitivity-enhanced algorithms have
been proposed in [9]–[11] for drone and vehicle racing. Since
the trajectories are optimized as a whole, the result is an
open-loop equilibrium.

4) Differential dynamic programming (DDP): DDP [12]
is a trajectory optimization method that iteratively performs
backward- and forward passes to refine the trajectory. During
the backward pass, an incremental control law is generated
based on second-order approximations of the cost and dy-
namics along a nominal trajectory. The forward pass updates
the nominal trajectory based on the incremental control
law. Using only a first-order approximation of the dynamics
results in iLQR [13].

Fridovich-Keil et al. [3] transfer this iterative procedure
to dynamic games. They approximate each player’s cost
function with a second-order tailor expansion and linearize
the dynamics. The result is a linear quadratic game for
which – like for time-discrete linear-quadratic regulators
(LQRs) – analytic solutions exist [14]. If this algorithm,
called iLQGame, converges, a Nash equilibrium to a local ap-
proximation of the game is found. Since iLQGame provides
feedback strategies for each player, the solution constitutes a
feedback Nash equilibrium. Similarly, Schwarting et al. [15]
solve a quadratic game in the backward pass to compute
incremental feedback laws for the players. However, they
plan in belief space, making it a multi-player variant of
iterative linear-quadratic Gaussian control.

Kavuncu et al. [16] show that their used cost function
constitutes a potential game so that the problem can be
reformulated as a conventional optimal control problem
(OCP). Using iLQR to solve the OCP, they find an open-
loop Nash equilibrium.

5) First-order optimality condition: ALGames by Le
Cleac’h et al. [2] solve a root-finding problem to fulfill the
first-order optimality condition of a Nash equilibrium. They
enforce constraints with an augmented Lagrangian method
and obtain a local open-loop Nash equilibrium with reported
superior computation times compared to iLQGame. Zhu and
Borrelli [17] develop an sequential quadratic programming
variant to find a Nash equilibrium as a solution to the
Karush–Kuhn–Tucker conditions. As in [2], the algorithm,

if it converges, finds an open-loop equilibrium.

II. SCOPE

Some of the above approaches are compared regarding
their calculation times [2] and convergence success rates
[17]. We, however, are interested in their behavioral outcome
and performance in racing scenarios. We focus on the com-
parison of open-loop and feedback solutions since the two
types of equilibria can lead to entirely different solutions, as
shown in Starr and Ho [18].

With this contribution, we propose a framework to assess
both concepts in racing scenarios. We identify the iLQGame
approach as a suitable method for finding open-loop and
feedback Nash equilibria. Although only the feedback case
is analyzed in [3], an adaption allows the approach to find
open-loop equilibria. The adaption does not require altering
the cost function or changing the fundamental working of
the algorithm so that differences in the solutions due to
different cost functions can be ruled out. This ensures the
comparability of different solutions caused by the type of
equilibrium.

In the following, we will first provide game-theoretic
preliminaries and introduce the two types of equilibria.
Section IV explains the iLQGame algorithm, and Section V
formulates our racing game with its dynamics and the play-
ers’ cost functions. In Section VI, we will show exemplary
results of open-loop and feedback trajectories to illustrate the
necessity of a more detailed examination.

III. GAME-THEORETIC PRELIMINARIES

The dynamics describing the propagation of the joint state
xk for a dynamic game with N players is given by:

xk+1 = fk

(
xk,u

1
k, . . . ,u

N
k

)
, (1)

where xk ∈ X = Rn and ui
k ∈ U i = Rm. We consider K-

stage games with an initial state x0, where the stage cost for
player i ∈ N = {1, 2, . . . , N} depends on player i’s control
inputs ui

k ∈ ui =
{
ui
0,u

i
1, . . . ,u

i
K−1

}
and the state xk.

The sequence of states depends on ui and the control inputs
of all other players, which is often expressed with the index
−i. Hence, the total cost of player i depends on the initial
state and all players’ inputs:

J i
(
x0,u

i,u−i
)
=

K−1∑
k=0

gik
(
xk,u

i
k

)
+ giK (xK) . (2)

A strategy γi =
{
γ(·)i0,γ(·)i1, . . . ,γ(·)iK−1

}
of the

strategy space Γi =
{
Γi
0,Γ

i
1, . . . ,Γ

i
K−1

}
determines the

control inputs for each stage k, depending on the available
information to player i. The cost functional (2) expressed
with strategies is:

J i
(
x0, γ

i, γ−i
)
=

K−1∑
k=0

gik
(
xk,γ

i
k(·)

)
+ giK (xK) . (3)

We omit the dependency on x0 for brevity in the following.
An N -tuple of strategies

{
γi∗ ∈ Γi; i ∈ N

}
constitutes a

Nash equilibrium if:



∀i ∈ N : J i
(
γi∗, γ−i∗) ≤ J i

(
γi, γ−i∗) (4)

Loosely speaking, no player can improve its outcome at a
Nash equilibrium by unilaterally altering its strategy.

The domain and codomain of the functions in the strategy
space depend on the information structure of the game [14].
The two information structures we consider lead to the
following two types of equilibria:

1) Open-loop Nash equilibrium: In the open-loop case,
all players observe the initial state x0 and generate a
sequence of control inputs in a single act. This means,
the strategy at stage k in (3) is a constant function with
γi
k(·) ∈ Γi

k = U i. A Nash equilibrium
{
γi∗ ∈ Γi; i ∈ N

}
therefore directly translates to the players’ input sequences{
ui∗ = γi∗; i ∈ N

}
. A forward simulation of (1) beginning

with x∗
0 = x0 provides the corresponding open-loop state

trajectory
{
x∗
k+1; k ∈ {0, 1, . . . ,K − 1}

}
.

The open-loop problem in discrete time can be seen as a
static infinite game, i.e., a game with infinite possible control
input sequences of which one has to be chosen at the first
and only stage k = 0 [14].

2) Feedback Nash equilibrium: If the players know the
current state xk, they can react to it and are not bound
to an initially set sequence of control inputs. A feedback
strategy γi

k : X → U i maps the state to a control input
ui
k so that the control inputs at a stage k corresponding

to a Nash equilibrium are:
{
ui∗
k = γi∗

k (xk); i ∈ N
}

. Such
strategies can be calculated via dynamic programming, i.e.,
by working backward for k from K to 0 and determining a
Nash equilibrium for each static sub-game from stage k to
k + 1.

In OCPs, which correspond to games with N = 1
and only one cost-functional J1, the trajectory obtained by
simulating (1) and applying the feedback solution in each
stage coincides with the open-loop solution. This, however,
does not apply to Nash equilibria of non-zero-sum games
with N > 1, even in the absence of disturbances or other
unpredictable inputs. Starr and Ho [18] provide an illustrative
example of this phenomenon and further examinations.

IV. SOLVING DISCRETE-TIME DYNAMIC GAMES

The iLQGame approach in [3] generates time-variant lin-
ear feedback laws for the players, yielding a feedback Nash
equilibrium solution. However, iLQGame can be adapted to
generate an open-loop solution as done in the supplemen-
tary material of [3]1. In the following, we recapitulate the
procedure which is summarized in Algorithm IV.

Beginning with an initial state x0 and an initial guess for
each player’s control input sequence ûi, the initial nominal
trajectory x̂ is obtained with (1).

1) Linearization of the dynamics: A linearization along
the nominal trajectory provides the dynamic and input ma-
trices for each time step and player. The resulting linear time-

1https://github.com/HJReachability/ilqgames

Algorithm 1 iLQGame
1: Input: x0, initial trajectory ûi and x̂
2: Output: Nash equilibrium trajectory ui∗ and x∗

3: while not converged do
4: for k ∈ {0, 1, . . . ,K} do
5: Ak,B

i
k ← LINEARIZE(x̂k, û

1
k, . . . , û

N
k )

6: Qi
k, q

i
k,R

ii
k , r

ii
k ← QUADRATIZE(x̂k, û

1
k, . . . , û

N
k )

7: Ki
k,k

i
k ← SOLVELQGAME(Ak, B

i
k, Q

i
k, q

i
k, R

ii
k , r

ii
k )

8: for k ∈ {0, 1, . . . ,K} do
9: ûi,new

k ← UPDATEINPUT(x̂new
k ,Ki

k,k
i
k)

10: x̂new
k+1 = fk

(
x̂new
k , û1,new

k , . . . , ûN,new
k

)
11: ûi ← ûi,new, x̂← x̂new

12: ui∗ ← ûi, x∗ ← x̂

variant system is:

∆xk+1 = Ak∆xk +
N∑
i=1

Bi
k∆ui

k with

∆xk = xk − x̂k and ∆ui
k = uk − ûi

k.

(5)

2) Quadratization of the cost function: As in iLQR, the
stage cost is approximated by a second-order Taylor series:

gik
(
∆xk,∆u1

k, . . . ,∆uN
k

)
≈ gik

(
x̂k, û

1
k, . . . , û

N
k

)
+(

∇xg
i
k|x̂k,û1

k,...,û
N
k

)⊤

︸ ︷︷ ︸
qi
k

∆xk+

1

2
∆x⊤

k

(
∇2

xg
i
k|x̂k,û1

k,...,û
N
k

)
︸ ︷︷ ︸

Qi
k

∆xk+

(
∇uigik|x̂k,û1

k,...,û
N
k

)⊤

︸ ︷︷ ︸
rii
k

∆ui
k+

1

2
∆ui⊤

k

(
∇2

uigik|x̂k,û1
k,...,û

N
k

)
︸ ︷︷ ︸

Rii
k

∆ui
k.

(6)

Here, we omit the mixed second-order terms since they do
not appear in our cost function. Using the notation in (6)
and omitting the constant term, the total cost for player i is
approximated by:

J i ∝1

2

K−1∑
k=0

[(
∆x⊤

k Q
i
k + 2qi⊤

k

)
∆xk+

N∑
j=1

[(
∆uj⊤

k Rij
k + 2rij⊤

)]
∆uj

k

]
+

1

2
∆x⊤

KQi
K∆xK + qi⊤

K ∆xK .

(7)

In our case, the mixed terms Rij
k and rijk with i ̸= j will be 0.

The cost structure (7) and the linear dynamics (5) constitute a
LQ game that approximates the original game locally around
the current nominal trajectory x̂.

https://github.com/HJReachability/ilqgames


3) Solving the LQ game: For the LQ game above, an
analytical solution for the strategy of a feedback Nash
equilibrium exists and has the linear affine form γi∗

k (∆xk) =
−Ki

k∆xk − ki
k [14]. The elements in the matrices Ki

k and
vectors ki

k are obtained by solving the following systems of
linear equations [3], [14]:(

Rii
k+ Bi⊤

k P i
k+1B

i
k

)
Ki

k +Bi⊤
k P i

k+1·
N∑

j=1,j ̸=i

[
Bj

kK
j
k

]
= Bi⊤

k P i
k+1Ak

(8a)

(
Rii

k+ Bi⊤
k P i

k+1B
i
k

)
ki
k +Bi⊤

k P i
k+1·

N∑
j=1,j ̸=i

[
Bj

kk
j
k

]
= Bi⊤

k pi
k+1 + riik

(8b)

As for linear-quadratic OCPs in discrete time, the matrices
P i

k and vectors pi
k can be obtained by a recursion, which is

given in Appendix VII-A.
For the open-loop Nash equilibrium, the strategy γi∗

k (·) =
−ki

k does not depend on the current state and can be obtained
with [3], [14]:

ki
k = −Rii−1

k

[
Bi⊤

k

(
M i

k+1∆xk+1 +mi
k+1

)
+ riik

]
(9a)

∆xk+1 = Λ−1
k

[
Ak∆xk−

N∑
j=1

Bj
kR

jj−1

k

(
Bj⊤

k mj
k+1 + rjjk

)]
.

(9b)

Again, M i
k+1 and mi

k+1 are obtained by a recursion given
in Appendix VII-B. Since both recursions proceed backward
from K to 0, this step is often called the backward pass.

4) Update Trajectory: The forward pass updates the con-
trol inputs and nominal state trajectory according to the
generated strategies. Due to the linearization of the dynamics
and quadratization of the cost function along the trajectory,
the obtained strategies are additive to the control inputs of
the previous iteration. In the open-loop case, Ki

k is set to 0,
and in the feedback case, it is applied on the difference from
the previous iteration. Beginning with x̂new

0 = x̂0 = x0 the
forward pass is:
For k from 1 to K:

ûi,new
k = ûi

k −Ki
k (x̂

new
k − x̂k)− ηki

k (10a)

x̂new
k+1 = fk

(
x̂new
k , û1,new

k , . . . , ûN,new
k

)
. (10b)

The scalar parameter 0 < η ≤ 1 can be interpreted as
a step size and is usually chosen much smaller than 1 to
account for large deviations from the nominal trajectories
where the approximations (5) and (7) do not hold. With
the new trajectory, the above sequence of linearization,
quadratization, backward pass, and forward pass repeat until
the algorithm converges.

Fridovich-Keil et al. [3] point out that the resulting trajec-
tory is not necessarily a Nash equilibrium of the original
game. Instead, it represents a strategy that satisfies the
conditions for a Nash equilibrium for a sequence of local
approximations of the game.

V. RACING GAME

A. Vehicle model and game dynamics

Each player is modeled by a point mass following [19]
where the state includes the progress s, velocity V , lateral
displacement n, relative orientation χ towards the track’s
reference line with the curvature κ(s), and the longitudinal
and lateral accelerations ax and ay. The control input vector
includes the jerks in longitudinal and lateral directions: u⊤ =[
jx jy

]
. The time-continuous nonlinear dynamics of player

i are given by:

ẋi =


ṡi

V̇ i

ṅi

χ̇i

ȧix
ȧiy

 = f̃ i(xi,ui) =



V i cos(χi)
1−niκ(si)

aix
V i sin(χi)

ai
y

V i − κ(si)V
i cos(χi)

1−niκ(si)

jix
jiy


. (11)

Since racing cars often operate at the handling limits, it is
important to constrain the accelerations to obtain feasible
trajectories. Similar to [19], we approximate the velocity-
dependent gg-diagrams by diamonds with a maximum posi-
tive acceleration ax ≤ ax,max(V ) and a maximum combined
radius ρ(V ): √

a2x + a2y ≤ ρ(V ). (12)

The joint state vector of the game is a concatenation of
N player state vectors:

ẋ =

 ẋ1

...
ẋN

 =

 f̃1(x,ui)
...

f̃N (x,uN )

 = f̃(x,u1, . . . ,uN ) (13)

B. Cost function

LQR approaches naturally do not consider state and input
constraints. Chen et al. [20] realize constraints in iLQR
through the cost function and introduce barrier functions.
Quadratic cost terms for constraint violations in [3] show
good results regarding convergence and robustness of the
iLQGame algorithm. Our stage costs, including the con-
straints, are:

gik = ui⊤
k Riui

k+ (14a)

N∑
j=1,j ̸=i

cic

e
1−

(
sik−s

j
k

lveh

)2

−
(

ni
k−n

j
k

wveh

)2
2

+ (14b)

1
{
ni
k ≥ wtr,l/r(s

i
k)
}
ciw

(
ni
k − wtr,l/r(s

i
k)
)2

+ (14c)

1
{
aix,k ≥ ax,max(V

i
k )
}
ciax

(
aix,k − ax,max(V

i
k )
)2

+
(14d)

1
{√

a2x + a2y ≥ ρ(V )
}
cia

(√
a2x + a2y − ρ(V )

)2

. (14e)

As in [3], we use the operator 1{·} which becomes 1
if the condition holds, and 0 otherwise. The term (14a)
regularizes the jerk as in [19] and (14b) introduces a coupling
between players by penalizing collisions. As player i and j



a) iLQR (sequential)

b) Feedback iLQGame

0 20 40 60 80 100

s in m

c) Open-loop iLQGame

Fig. 1. Results for iLQR, open-loop iLQGame, and feedback iLQGame:
All three methods use the same cost parameters and are initialized with
ûi = 0.

come closer, the term increases with longitudinal and lateral
distances weighted differently.

All other stage cost terms implement soft constraints
with the weights cw, cax

, ca, cc. (14c) enforces the track
boundaries with the track widths to the left and right wtr,l/r.
Note that none of the state constraints depend on the inputs
in ui

k, as this would result in mixed second-order terms in
(6).

The terminal costs introduce another coupling and should
provide the incentive to drive fast and to be ahead at the end
of the planning horizon:

giK = −siK + cig

N∑
j=1,j ̸=i

sjK (15)

The first term penalizes little progress and the second term
with the weight cg should incentivize defending or blocking
maneuvers. A similar terminal cost for racing is used in [9].

VI. EXEMPLARY RESULTS

This section provides examples to demonstrate the capabil-
ity of iLQGame to consider interactions in racing scenarios
and to motivate comparing the two types of Nash equilibria.
The considered scenario in Figures 1 and 2 includes the
ego vehicle (i = 1, blue) with a maximum velocity of
20m/s and the opponent (i = 2, orange) with 25m/s. The
opponent approaches the ego vehicle with 23m/s and a lateral
displacement of 2m. For the following results, we initialize
the control input sequences with ûi = 0.

Figure 1 a) shows the trajectories obtained with a sequen-
tial approach. The opponent vehicle is predicted assuming
a constant velocity and lateral displacement. With the fixed
prediction, the iLQGame algorithm reduces to iLQR, and the
resulting trajectory swerves to the right to avoid collisions.
This scenario highlights the importance of interaction-aware
planning since the observed yielding behavior is not desirable
in competitive racing.

The feedback solution is shown in Figure 1 b). The right
swerving maneuver of the ego vehicle occurs to a lesser

0 20 40 60 80 100

ci=2
c ↑

s in m
Fig. 2. Variation of ci=2

c for feedback iLQGame: A greater ratio of
ci=2
c /ci=1

c causes the ego vehicle to be more aggressive, forcing the
opponent to swerve further to the left.

degree due to its awareness that the opponent is also trying
to avoid collisions. Increasing the collision cost weight of
the opponent ci=2

c as shown in Figure 2 results in a greater
leveraging of the opponent’s reaction so that the ego vehicle
can maintain its course. The choice of ci=2

c > ci=1
c can be

justified assuming that the trailing vehicle bears a greater
responsibility to avoid collisions.

Figure 1 c) shows the trajectories of the open-loop so-
lution. The players’ behaviors significantly differ from the
feedback solution, and the ego vehicle performs a blocking
maneuver. However, we want to point out that when the
open-loop iLQGame algorithm is initialized with the feed-
back solution, it terminates after the first iteration, yielding
the same outcome.

VII. OUTLOOK

The examples in Section VI illustrate iLQGame’s ca-
pability to consider interactions in racing scenarios. The
algorithm converges to different solutions in the open-loop
and feedback cases when initialized with identical input se-
quences. However, when initialized differently, both concepts
can yield the same solution. This phenomenon is consistent
with the non-uniqueness of Nash equilibria in dynamic
nonzero-sum games. Therefore, the convergence property of
iLQGame should be further examined in future work. The
investigation should include the influence of the initialization
and of the step size η.

Our current analysis is limited to one planning step,
whereas planning algorithms are usually applied with a
moving horizon. The algorithm’s initialization is then based
on the solution from the previous planning step. Future
work should assess the outcomes regarding performance and
safety when the two types of equilibria are used with a
moving horizon. The analyses should also consider more
complex race tracks and the case in which the opponent
employs a sequential approach to evaluate the robustness
when exposed to a non-interaction-aware player. Ultimately,
the analyses should conclude whether iLQGame is suited
for racing scenarios and whether an open-loop or a feedback
solution should be preferred.

As indicated in Figure 2, the cost parameterization influ-
ences the ego vehicle’s aggressiveness. Further experiments
should determine reasonable racing parameterizations and
identify possibly online adjustable parameters to gain an
advantage during a race while maintaining safe behaviors.
These parameters may depend, e.g., on the current position
relative to the opponent, i.e., whether the ego vehicle is
leading or trailing.



REFERENCES

[1] M. Schmidt, C. Manna, J. H. Braun, C. Wissing, M. Mohamed, and
T. Bertram, “An Interaction-Aware Lane Change Behavior Planner for
Automated Vehicles on Highways Based on Polygon Clipping,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 1876–1883, 2019.

[2] S. Le Cleac’h, M. Schwager, and Z. Manchester, “ALGAMES: a
fast augmented Lagrangian solver for constrained dynamic games,”
Autonomous Robots, vol. 46, no. 1, pp. 201–215, 2022.

[3] D. Fridovich-Keil, E. Ratner, L. Peters, A. D. Dragan, and C. J.
Tomlin, “Efficient Iterative Linear-Quadratic Approximations for Non-
linear Multi-Player General-Sum Differential Games,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 1475–1481.

[4] L. Crosato, H. P. H. Shum, E. S. L. Ho, and C. Wei, “Interaction-
Aware Decision-Making for Automated Vehicles Using Social Value
Orientation,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2,
pp. 1339–1349, 2023.

[5] J. F. Fisac, E. Bronstein, E. Stefansson, D. Sadigh, S. S. Sastry,
and A. D. Dragan, “Hierarchical Game-Theoretic Planning for Au-
tonomous Vehicles,” in 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 9590–9596.

[6] J. Bhargav, J. Betz, H. Zheng, and R. Mangharam, “Track based
Offline Policy Learning for Overtaking Maneuvers with Autonomous
Racecars.”

[7] H. Zheng, Z. Zhuang, J. Betz, and R. Mangharam, “Game-theoretic
Objective Space Planning.”

[8] A. Liniger and J. Lygeros, “A Noncooperative Game Approach to Au-
tonomous Racing,” IEEE Transactions on Control Systems Technology,
vol. 28, no. 3, pp. 884–897, 2020.

[9] M. Wang, Z. Wang, J. Talbot, J. C. Gerdes, and M. Schwager, “Game-
Theoretic Planning for Self-Driving Cars in Multivehicle Competitive
Scenarios,” IEEE Transactions on Robotics, vol. 37, no. 4, pp. 1313–
1325, 2021.

[10] Z. Wang, R. Spica, and M. Schwager, “Game Theoretic Motion
Planning for Multi-robot Racing,” in Distributed Autonomous Robotic
Systems, ser. Springer Proceedings in Advanced Robotics, N. Correll,
M. Schwager, and M. Otte, Eds. Cham: Springer International
Publishing, 2019, vol. 9, pp. 225–238.

[11] R. Spica, E. Cristofalo, Z. Wang, E. Montijano, and M. Schwager,
“A Real-Time Game Theoretic Planner for Autonomous Two-Player
Drone Racing,” IEEE Transactions on Robotics, vol. 36, no. 5, pp.
1389–1403, 2020.

[12] D. Q. Mayne, “A Second-order Gradient Method for Determining Op-
timal Trajectories of Non-linear Discrete-time Systems,” International
Journal of Control, vol. 3, no. 1, pp. 85–95, 1966.

[13] W. Li and E. Todorov, “Iterative Linear Quadratic Regulator Design
for Nonlinear Biological Movement Systems,” in Proceedings of the
First International Conference on Informatics in Control, Automation
and Robotics. SciTePress - Science and and Technology Publications,
2004, pp. 222–229.

[14] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory,
2nd ed., ser. Classics in applied mathematics. Philadelphia, Pa.: SIAM
Soc. for Industrial and Applied Mathematics, 1999, vol. 23.

[15] W. Schwarting, A. Pierson, S. Karaman, and D. Rus, “Stochastic
Dynamic Games in Belief Space,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 2157–2172, 2021.

[16] T. Kavuncu, A. Yaraneri, and N. Mehr, “Potential iLQR: A Potential-
Minimizing Controller for Planning Multi-Agent Interactive Trajecto-
ries,” in Robotics: Science and Systems XVII. Robotics: Science and
Systems Foundation, 2021.

[17] E. L. Zhu and F. Borrelli, “A Sequential Quadratic Programming
Approach to the Solution of Open-Loop Generalized Nash Equilibria,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 3211–3217.

[18] A. W. Starr and Y. C. Ho, “Further properties of nonzero-sum
differential games,” Journal of Optimization Theory and Applications,
vol. 3, no. 4, pp. 207–219, 1969.

[19] M. Rowold, L. Ögretmen, U. Kasolowsky, and B. Lohmann, “On-
line Time-Optimal Trajectory Planning on Three-Dimensional Race
Tracks,” in 2023 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2023, pp. 1–8.

[20] J. Chen, W. Zhan, and M. Tomizuka, “Constrained iterative LQR
for on-road autonomous driving motion planning,” in 2017 IEEE
20th International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2017, pp. 1–7.

APPENDIX

The derivations of the following recursions
(16) and (18) without linear cost terms are
given in [14]. The supplementary material to [3]
(https://github.com/HJReachability/ilqgames/tree/master/
derivations) provides the extensions with linear cost terms.

A. Recursion for the feedback equilibrium

Beginning with P i
K = Qi

K and pi
K = qi

K :
For k from K − 1 to 0:

Fk = Ak −
N∑
j=1

Bj
kK

j
k, βk = −

N∑
j=1

Bj
kk

j
k (16a)

P i
k = Qi

k + F⊤
k P i

k+1Fk +

N∑
j=1

Kj⊤
k Rij

k K
j
k (16b)

pi
k = qi

k+F⊤
k

(
pi
k+1 + P i

k+1βk

)
+

N∑
j=1

[
Kj⊤

k Rij
k k

j
k −Kj⊤

k rijk

]
.

(16c)

It should be noted, that for N = 1 and qk = rk = 0, (16b)
together with (8a) simplify to the difference Riccati equation
(dropping index i):

Pk = Qk+A⊤
k Pk+1Ak −

(
A⊤

k Pk+1Bk

)
·(

Rk +B⊤
k Pk+1Bk

)−1 (
B⊤

k Pk+1Ak

)
,

(17)

which is well known from LQRs in discrete time.

B. Recursion for the open-loop equilibrium

Beginning with M i
K = Qi

K and mi
K = qi

K :
For k from K − 1 to 0:

Λk = I+
N∑
j=1

Bj
kR

jj−1

k Bj⊤
k M j

k+1 (18a)

mi
k = A⊤

k

[
mi

k+1 −M i
k+1Λ

−1
k ·

N∑
j=1

Bj
kR

jj−1

k

(
Bj⊤

k mj
k+1 + rjjk

)]
+ qi

k

(18b)

M i
k = Qi

k +A⊤
k M

i
k+1Λ

−1
k Ak. (18c)

https://github.com/HJReachability/ilqgames/tree/master/derivations
https://github.com/HJReachability/ilqgames/tree/master/derivations

	Introduction
	Related Work
	Offline policy generation
	Sampling-based
	IBR
	DDP
	First-order optimality condition


	Scope
	Game-Theoretic Preliminaries
	Open-loop Nash equilibrium
	Feedback Nash equilibrium


	Solving Discrete-Time Dynamic Games
	Linearization of the dynamics
	Quadratization of the cost function
	Solving the LQ game
	Update Trajectory


	Racing Game
	Vehicle model and game dynamics
	Cost function

	Exemplary Results
	Outlook
	References
	Recursion for the feedback equilibrium
	Recursion for the open-loop equilibrium


