
Multi-Agent Deep Reinforcement Learning for Cooperative and
Competitive Autonomous Vehicles using AutoDRIVE Ecosystem

Tanmay Samak⋆†, Chinmay Samak⋆† and Venkat Krovi†

Abstract— This work presents a modular and parallelizable
multi-agent deep reinforcement learning framework for im-
bibing cooperative as well as competitive behaviors within
autonomous vehicles. We introduce AutoDRIVE Ecosystem
as an enabler to develop physically accurate and graphically
realistic digital twins of Nigel and F1TENTH, two scaled
autonomous vehicle platforms with unique qualities and ca-
pabilities, and leverage this ecosystem to train and deploy
multi-agent reinforcement learning policies. We first investigate
an intersection traversal problem using a set of cooperative
vehicles (Nigel) that share limited state information with each
other in single as well as multi-agent learning settings using a
common policy approach. We then investigate an adversarial
head-to-head autonomous racing problem using a different set
of vehicles (F1TENTH) in a multi-agent learning setting using
an individual policy approach. In either set of experiments, a
decentralized learning architecture was adopted, which allowed
robust training and testing of the approaches in stochastic
environments, since the agents were mutually independent and
exhibited asynchronous motion behavior. The problems were
further aggravated by providing the agents with sparse obser-
vation spaces and requiring them to sample control commands
that implicitly satisfied the imposed kinodynamic as well as
safety constraints. The experimental results for both problem
statements are reported in terms of quantitative metrics and
qualitative remarks for training as well as deployment phases.

Index Terms— Multi-Agent Systems, Autonomous Vehicles,
Deep Reinforcement Learning, Game Theory, Digital Twins

I. INTRODUCTION

In the rapidly evolving landscape of connected and au-
tonomous vehicles (CAVs), the pursuit of intelligent and
adaptive driving systems has emerged as a formidable chal-
lenge. Multi-Agent Reinforcement Learning (MARL) stands
out as a promising avenue in the quest to develop au-
tonomous vehicles capable of navigating complex and dy-
namic environments, while taking into account the coopera-
tive and/or competitive nature of interactions with their peers.
Particularly, cooperative and competitive MARL represent
two pivotal approaches to addressing the intricate challenges
posed by multi-agent interactions in autonomous driving
scenarios. While cooperative MARL encourages agents to
collaborate and share information to achieve common ob-
jectives, competitive MARL introduces elements of rivalry
and adversary among agents, where individual success may
come at the expense of others. These paradigms offer crucial

⋆These authors contributed equally.
†Automation, Robotics and Mechatronics Lab (ARMLab), Department of

Automotive Engineering, Clemson University International Center for Au-
tomotive Research (CU-ICAR), Greenville, SC 29607, USA. {tsamak,
csamak, vkrovi}@clemson.edu

(a) Cooperative MARL using Nigel.

(b) Competitive MARL using F1TENTH.

Fig. 1: Multi-agent deep reinforcement learning framework
using AutoDRIVE Ecosystem.

insights into the development of autonomous vehicles, and
have the potential to reshape the future of transportation.

Cooperative MARL [1]–[6] fosters an environment in
which autonomous vehicles cooperate to accomplish col-
lective objectives such as optimizing traffic flow, enhancing
safety, and efficiently navigating road networks. It mirrors
real-world situations where vehicles must work together,
such as traffic merging, intersection management, or pla-
tooning scenarios. Challenges in cooperative MARL include
coordinating vehicle actions to minimize congestion, main-
taining safety margins, and ensuring smooth interactions
between self-interested agents.

On the other hand, competitive MARL [7]–[10] introduces
a competitive edge to autonomous driving, simulating sce-
narios such as overtaking, merging in congested traffic, or
competitive racing. In this paradigm, autonomous vehicles
strive to outperform their counterparts, vying for advantages
while navigating complex and dynamic environments. Chal-

mailto:tsamak@clemson.edu
mailto:csamak@clemson.edu
mailto:vkrovi@clemson.edu

(a) Physical Nigel. (b) Virtual Nigel. (c) Physical F1TENTH. (d) Virtual F1TENTH.

Fig. 2: Creating the digital twins of Nigel and F1TENTH in AutoDRIVE Simulator.

lenges in competitive MARL encompass strategic decision-
making, opponent modeling, and adapting to aggressive
driving behaviors while preserving safety standards.

As the field of MARL gains momentum within the realm
of autonomous vehicles, it is crucial to comprehensively
examine the implications of both cooperative and competitive
approaches. In this paper, we present AutoDRIVE Ecosystem
[11], [12] as an enabler to develop physically accurate
and graphically realistic digital twins of scaled autonomous
vehicles viz. Nigel [13] and F1TENTH [14] in Section II.
We then present the problem formulation, solution approach
as well as training and deployment results for a cooperative
non-zero-sum use-case of intersection traversal (refer Fig.
1(a)) in Section III and a competitive zero-sum use-case of
head-to-head autonomous racing (refer Fig. 1(b)) in Section
IV. Finally we present an overall summary of our work with
some concluding remarks on either case-studies.

II. DIGITAL TWIN CREATION

We leveraged AutoDRIVE Simulator [15], [16] to develop
digital twin models of Nigel as well as F1TENTH. It is to
be noted, however, that this work utilizes the said models in
the capacity of virtual prototyping, but we seek to further
investigate emerging possibilities of utilizing the digital
thread for harnessing the true potential of digital twins.

A. Vehicle Dynamics Models

The vehicle model is a combination of a rigid body and a
collection of sprung masses iM , where the total mass of the
rigid body is defined as M =

∑
iM . The rigid body’s center

of mass, XCOM =
∑ iM∗iX∑

iM , connects these representations,
with iX representing the coordinates of the sprung masses.

The suspension force acting on each sprung mass is
computed as iM∗iZ̈+iB∗(iŻ−iż)+iK∗(iZ−iz), where iZ
and iz are the displacements of sprung and unsprung masses,
and iB and iK are the damping and spring coefficients of
the i-th suspension, respectively.

The vehicle’s wheels are also treated as rigid bodies with
mass m, subject to gravitational and suspension forces: im∗
iz̈ + iB ∗ (iż − iŻ) + iK ∗ (iz − iZ).

Tire forces are computed based on the friction curve

for each tire, represented as
{

iFtx = F (iSx)
iFty = F (iSy)

, where iSx

and iSy are the longitudinal and lateral slips of the i-
th tire, respectively. The friction curve is approximated
using a two-piece cubic spline, defined as F (S) =

{
f0(S); S0 ≤ S < Se

f1(S); Se ≤ S < Sa
, where fk(S) = ak ∗S3+ bk ∗S2+

ck ∗S+dk is a cubic polynomial function. The first segment
of the spline ranges from zero (S0, F0) to an extremum
point (Se, Fe), while the second segment ranges from the
extremum point (Se, Fe) to an asymptote point (Sa, Fa).

The tire slip is influenced by factors including tire stiffness
iCα, steering angle δ, wheel speeds iω, suspension forces
iFs, and rigid-body momentum iP . These factors impact the
longitudinal and lateral components of the vehicle’s linear
velocity. The longitudinal slip iSx of the i-th tire is calculated
by comparing the longitudinal components of the surface
velocity of the i-th wheel (i.e., longitudinal linear velocity
of the vehicle) vx with the angular velocity iω of the i-th
wheel: iSx =

ir∗iω−vx
vx

. The lateral slip iSy depends on
the tire’s slip angle α and is determined by comparing the
longitudinal vx (forward velocity) and lateral vy (side-slip
velocity) components of the vehicle’s linear velocity: iSy =
tan(α) =

vy
|vx| .

B. Sensor Models

The simulated vehicles can be equipped with the physi-
cally accurate interoceptive as well as exteroceptive sensing
modalities. Specifically, the throttle (τ) and steering (δ)
sensors are simulated using a straightforward feedback loop.

Incremental encoders are simulated by measuring the
rotation of the rear wheels (i.e., the output shaft of driving
actuators): iNticks = iPPR ∗ iGR ∗ iNrev , where iNticks

represents the ticks measured by the i-th encoder, iPPR is
the base resolution (pulses per revolution) of the i-th encoder,
iGR is the gear ratio of the i-th motor, and iNrev represents
the number of revolutions of the output shaft of the i-th
motor.

The Inertial Positioning System (IPS) and Inertial Mea-
surement Unit (IMU) are simulated based on temporally-
coherent rigid-body transform updates of the vehicle {v}

with respect to the world {w}: wTv =

[
R3×3 t3×1

01×3 1

]
∈

SE(3). The IPS provides 3-DOF positional coordinates
{x, y, z} of the vehicle, while the IMU supplies linear
accelerations {ax, ay, az}, angular velocities {ωx, ωy, ωz},
and 3-DOF orientation data for the vehicle, either as Euler
angles {ϕx, θy, ψz} or as a quaternion {q0, q1, q2, q3}.

The LIDAR simulation employs iterative ray-
casting raycast{wTl, R⃗, rmax} for each angle
θ ∈ [θmin : θres : θmax] at an approximate update
rate of 7 Hz. Here, wTl = wTv ∗ vTl ∈ SE(3)

represents the relative transformation of the LIDAR {l}
with respect to the vehicle {v} and the world {w},
R⃗ = [rmax ∗ sin(θ) rmin ∗ cos(θ) 0]

T defines the
direction vector of each ray-cast R, where rmin = 0.15 m
and rmax = 12 m denote the minimum and maximum linear
ranges of the LIDAR, θmin = 0◦ and θmax = 360◦ set
the minimum and maximum angular ranges of the LIDAR,
and θres = 1◦ represents the angular resolution of the
LIDAR. The laser scan ranges are determined by checking
ray-cast hits and then applying a threshold to the minimum
linear range of the LIDAR, calculated as ranges[i]={
hit.dist if ray[i].hit and hit.dist ≥ rmin

∞ otherwise
,

where ray.hit is a Boolean flag indicating whether a ray-
cast hits any colliders in the scene, and hit.dist=√
(xhit − xray)2 + (yhit − yray)2 + (zhit − zray)2

calculates the Euclidean distance from the ray-cast
source {xray, yray, zray} to the hit point {xhit, yhit, zhit}.

The simulated physical cameras are parameterized by their
focal length (f = 3.04 mm), sensor size ({sx, sy} = {3.68,
2.76} mm), target resolution (default = 720p), as well as
the distances to the near and far clipping planes (N = 0.01
m and F = 1000 m). The viewport rendering pipeline for
the simulated cameras operates in three stages. First, the
camera view matrix V ∈ SE(3) is computed by obtaining
the relative homogeneous transform of the camera {c} with

respect to the world {w}: V =

r00 r01 r02 t0
r10 r11 r12 t1
r20 r21 r22 t2
0 0 0 1

, where

rij and ti denote the rotational and translational components,
respectively. Next, the camera projection matrix P ∈ R4×4 is
calculated to project world coordinates into image space co-

ordinates: P =

2∗N
R−L 0 R+L

R−L 0

0 2∗N
T−B

T+B
T−B 0

0 0 −F+N
F−N − 2∗F∗N

F−N

0 0 −1 0

, where

N and F represent the distances to the near and far clip-
ping planes of the camera, and L, R, T , and B denote
the left, right, top, and bottom offsets of the sensor. The
camera parameters {f, sx, sy} are related to the terms of
the projection matrix as follows: f = 2∗N

R−L , a =
sy
sx

, and
f
a = 2∗N

T−B . The perspective projection from the simulated
camera’s viewport is given as C = P ∗ V ∗ W, where
C = [xc yc zc wc]

T represents image space coordinates,
and W = [xw yw zw ww]

T represents world coordinates.
Finally, this camera projection is transformed into normalized
device coordinates (NDC) by performing perspective division
(i.e., dividing throughout by wc), leading to a viewport
projection achieved by scaling and shifting the result and
then utilizing the rasterization process of the graphics API
(e.g., DirectX for Windows, Metal for macOS, and Vulkan
for Linux). Additionally, a post-processing step simulates
lens and film effects, such as lens distortion, depth of
field, exposure, ambient occlusion, contact shadows, bloom,
motion blur, film grain, chromatic aberration, etc.

C. Actuator Models

The vehicle’s motion is controlled by driving and steering
actuators, with response delays and saturation limits matched
to their real-world counterparts by tuning their torque profiles
and actuation limits.

The driving actuators propel the rear/front/all wheels by
applying a torque, calculated as iτdrive = iIw ∗ iω̇w, where
iIw = 1

2 ∗
imw ∗ irw

2 represents the moment of inertia, iω̇w

is the angular acceleration, imw is the mass, and irw is the
radius of the i-th wheel. Additionally, the driving actuators
simulate holding torque by applying an idle motor torque
equivalent to the braking torque, i.e., iτidle =

iτbrake.
The front wheels are steered using a steering actuator

that generates a torque proportional to the required angu-
lar acceleration, given by τsteer = Isteer ∗ ω̇steer. The
individual turning angles, δl and δr, for the left and right
wheels, respectively, are computed based on the commanded
steering angle δ, utilizing the Ackermann steering geometry
defined by the wheelbase l and track width w, as follows:δl = tan−1

(
2∗l∗tan(δ)

2∗l+w∗tan(δ)

)
δr = tan−1

(
2∗l∗tan(δ)

2∗l−w∗tan(δ)

)
D. Environment Models

At each time step, the simulator conducts mesh-mesh
interference detection and computes contact forces, frictional
forces, momentum transfer, as well as linear and angular drag
acting on all rigid bodies. Simulated environments can be
established using one of the following approaches:

• AutoDRIVE IDK: Custom scenarios and maps can be
crafted by utilizing the modular and adaptable Infras-
tructure Development Kit (IDK). This kit provides the
flexibility to configure terrain modules, road networks,
obstruction modules, and traffic elements. Specifically,
the intersection traversal scenario was developed using
AutoDRIVE IDK.

• Plug-In Scenarios: AutoDRIVE Simulator supports
third-party tools, such as RoadRunner [17], and open
standards like OpenSCENARIO [18] and OpenDRIVE
[19]). This allows users to incorporate a diverse range
of plugins, packages, and assets in several standard
formats for creating or customizing driving scenarios.
Particularly, the autonomous racing scenario was cre-
ated based on the binary occupancy grid map of a real-
world F1TENTH racetrack called “Proto” using a third-
party 3D modelling software, which was then imported
into AutoDRIVE Simulator and post-processed with
physical as well as graphical enhancements to make it
“sim-ready”.

• Unity Terrain Integration: Since the AutoDRIVE Sim-
ulator is built atop the Unity [20] game engine, it
seamlessly supports scenario design and development
through Unity Terrain [21]. Users have the option to
define terrain meshes, textures, heightmaps, vegetation,
skyboxes, wind effects, and more, allowing design of
both on-road and off-road scenarios. This option is well-
suited for modelling full-scale environments.

III. COOPERATIVE MULTI-AGENT SCENARIO

Inspired by [6], this use-case encompassed both single-
agent and multi-agent learning scenarios, where each agent’s
objective was autonomous traversal of a 4-lane, 4-way inter-
section without collisions or lane boundary violations. Each
vehicle possessed intrinsic state information and received
limited state information about its peers; no external sensing
modalities were employed. A deep neural network policy was
independently trained for each scenario, guiding the agents
through the intersection safely. The entire case-study was
developed using an integrated ML framework [22] within
AutoDRIVE Simulator.

A. Problem Formulation

In single-agent learning scenario, only the ego vehicle
learned to traverse the intersection, while peer vehicles were
controlled at different velocities using a simple heuristic.
Peer vehicles shared their states with the ego vehicle via V2V
communication. All vehicles were reset together, making this
scenario quite deterministic.

In multi-agent learning scenario, all vehicles learned to
traverse the intersection simultaneously in a decentralized
manner. Vehicles shared their states with each other via V2V
communication and were reset independently, resulting in a
highly stochastic scenario.

In both the scenarios, the challenge revolved around
autonomous navigation in an unknown environment. The
exact structure/map of the environment was not known to
any agent. Consequently, this decision-making problem was
framed as a Partially Observable Markov Decision Process
(POMDP), which captured hidden state information through
environmental observations.

B. State Space

As previously discussed, the state space S for intersection
traversal problem could be divided into observable so ⊂ S
and hidden sh ⊂ S components. The observable component
included the vehicle’s 2D pose and velocity, denoted as sot =
[px, py, ψ, v] t ∈ R4. The hidden component encompassed
the agent’s goal coordinates, represented as sth = [gx, gy]t ∈
R2. Thus, each agent could observe the pose and velocity
of its peers (via V2V communication) but kept its own
goal location hidden from others. Consequently, the complete
state space of an agent participating in this problem was a
vector containing all observable and hidden states:

st =
[
sot , s

h
t

]
(1)

C. Observation Space

Based on the state space defined in Equation 1, each
agent employed an appropriate subset of its sensor suite
to collect observations (as per Equation 2). This included
Inertial Positioning System (IPS) for positional coordinates
[px, py] t ∈ R2, Inertial Measurement Unit (IMU) for yaw
ψt ∈ R1, and incremental encoders for estimating vehicle
velocity vt ∈ R1. Each agent i (where 0 < i < N) was
provided with an observation vector of the form:

oit =
[
gi, p̃i, ψ̃i, ṽi

]
t
∈ R2+4(N−1) (2)

This formulation allowed git =
[
gix − pix, g

i
y − piy

]
t ∈ R2

to represent the ego agent’s goal location relative to itself,
p̃ti =

[
pjx − pix, p

j
y − piy

]
t ∈ R2(N−1) to denote the position

of every peer agent relative to the ego agent, ψ̃ti = ψj
t−ψi

t ∈
RN−1 to express the yaw of every peer agent relative to the
ego agent, and ṽti = vtj ∈ RN−1 to indicate the velocity
of every peer agent. Here, i represented the ego agent, and
j ∈ [0, N − 1] represented every other (peer) agent in the
scene, with a total of N agents.

D. Action Space

The vehicles were designed as non-holonomic rear-wheel-
drive models featuring an Ackermann steering mechanism.
As a result, the complete action space of an agent comprised
longitudinal (throttle/brake) and lateral (steering) motion
control commands. For longitudinal control, the throttle
command τt was set to 80% of its upper saturation limit.
The steering command δt was discretized as δt ∈ {−1, 0, 1}
and was the sole active control source for safely navigating
the intersection, as expressed in Equation 3:

at = δt ∈ R1 (3)

E. Reward Function

The extrinsic reward function (as shown in Equation
4) was designed to reward each agent with rgoal = +1
for successfully traversing the intersection. Alternatively, it
penalized agents proportionally to their distance from the
goal, represented as kp∗

∣∣git∣∣ 2, for collisions or lane boundary
violations. The penalty constant kp was set to 0.425, resulting
in a maximum penalty of 1.

rit =

{
rgoal; if traversed the intersection safely
−kp ∗

∥∥git∥∥2 ; if collided or overstepped lanes
(4)

This encouraged agents to get closer to their respective
goals, reducing penalties and ultimately leading to a positive
reward, rgoal. This approach not only expedited convergence
but also restricted reward hacking.

F. Optimization Problem

The task of intersection traversal, with collision avoidance
and lane-keeping constraints, was addressed through the ex-
trinsic reward function described in Equation 4. This function
motivated each individual agent to maximize the expected
future discounted reward (as per Equation 5) by learning a
policy πθ (at|ot). Over time, this policy transitioned into the
optimal policy π∗.

argmax
πθ(at|ot)

E

[∞∑
t=0

γtrt

]
(5)

(a) (b) (c) (d) (e) (f)

Fig. 3: Training results for (a)-(c) single-agent and (d)-(f) multi-agent intersection traversal scenarios: (a) and (d) denote
cumulative reward, (b) and (e) denote episode length, while (c) and (f) denote policy entropy w.r.t. training steps.

(a) (b) (c) (d) (e) (f)

Fig. 4: Deployment results for (a)-(c) single-agent and (d)-(f) multi-agent intersection traversal scenarios: (a) and (d) denote
first frozen snapshot, (b) and (e) denote second frozen snapshot, while (c) and (f) denote denote third frozen snapshot.

G. Training

At each time step t, each parallelized agent i collected an
observation vector oit and an extrinsic reward rit. Based on
these inputs, it took an action ait determined by the policy
πθ, which was continually updated to maximize the expected
future discounted reward (refer Fig. 3).

This use-case employed a fully connected neural network
(FCNN) as a function approximator for πθ (at|ot). The
network had R14 inputs, R1 outputs, and three hidden layers
with 128 neural units each. The policy parameters θ ∈ Rd

were defined in terms of the network’s parameters. The
policy was trained to predict steering commands directly
based on collected observations, utilizing the proximal policy
optimization (PPO) algorithm [23].

H. Deployment

The trained policies were deployed onto the simulated
vehicles, separately for both single-agent and multi-agent
scenarios. As previously mentioned, the single-agent sce-
nario was relatively deterministic, and the ego vehicle could
safely traverse the intersection in most cases. In contrast,
the multi-agent scenario was highly stochastic, resulting in a
significantly lower success rate, especially with all vehicles
navigating the intersection safely simultaneously.

Fig.4(a)-(c) present three key stages of the single-agent
intersection traversal scenario. The first stage depicts the ego
vehicle approaching the conflict zone, where it could poten-
tially collide with peer vehicles. The second stage shows the
vehicle executing a left turn to avoid collisions. Finally, the
third stage illustrates the vehicle performing a subtle right
turn to reach its goal. Fig.4(d)-(f) display three critical stages
of the multi-agent intersection traversal scenario. In the first
frame, vehicles 1 and 4 successfully avoid collision. The
second frame showcases vehicle 1 finding a gap between
vehicles 2 and 3 to reach its goal. In the third frame, vehicles
2 and 3 evade collision, while vehicle 4 approaches its goal,
and vehicle 1 is re-spawned.

IV. COMPETITIVE MULTI-AGENT SCENARIO

Inspired by [9], this use-case encompassed a multi-agent
learning scenario, where each agent’s objective was mini-
mizing its lap time without colliding with the track or its
opponent. Each vehicle possessed intrinsic state information
and sparse LIDAR measurements; no state information was
shared among the competing vehicles. The entire use-case
was developed using the same integrated ML framework
mentioned in Section III.

A. Problem Formulation

This case-study addressed the problem of autonomous
racing in an unknown environment. The exact structure/map
of the environment was not known to any agent. Conse-
quently, this decision-making problem was also framed as
a POMDP, which captured hidden state information through
environmental observations.

We adopted an equally-weighted hybrid imitation-
reinforcement learning architecture to progressively inculcate
autonomous driving and racing behaviors into the agents.
Consequently, we recorded 5 laps worth of independent
demonstration datasets for each agent by manually driving
the vehicles in sub-optimal trajectories within a single-
agent setting. We hypothesised that such a hybrid learning
architecture would guide the agents’ exploration, thereby
reducing training time significantly.

B. Observation Space

At each time step t, the agent collected a vectorized
observation, as shown in Equation 6, from the environment.
These observations were obtained using velocity estimation
and exteroceptive ranging modalities mounted on the virtual
vehicle(s):

oit =
[
vit,m

i
t

]
∈ R28 (6)

Here, vit ∈ R1 represents the forward velocity of i-
th agent, and mi

t =
[
1mi

t,
2mi

t, · · · ,27mi
t

]
∈ R27 is the

(a) (b) (c) (d) (e) (f)

Fig. 5: Training results for multi-agent autonomous racing: (a) denotes BC loss, (b) denotes GAIL reward, (c) denotes
curiosity reward, (d) denotes extrinsic reward, (e) denotes policy entropy, and (f) denotes episode length w.r.t. training steps.

(a) (b) (c) (d) (e) (f)

Fig. 6: Deployment results for multi-agent autonomous racing: (a)-(c) denote three frozen snapshots of a block-block-overtake
sequence, and (d)-(f) denote three frozen snapshots of a let-pass-and-overtake sequence.

measurement vector providing 27 range readings up to 10
meters. These readings are uniformly distributed over 270◦

around each side of the heading vector, spaced 10◦ apart.
These observations were then input into a deep neural
network policy denoted as πθ, where θ ∈ Rd denotes the
policy parameters.

C. Action Space

The policy mapped the observations ot directly to an
appropriate action at, as expressed in Equation 7:

ait =
[
τ it , δ

i
t

]
∈ R2 (7)

Here, τ it ∈ {0.1, 0.5, 1.0} represent the discrete throt-
tle commands at 10%, 50% and 100% PWM duty cycles
for torque limited (85.6 N-m) drive actuators, and δit ∈
{−1, 0, 1} represent the discrete steering commands for left,
straight, and right turns, respectively.

D. Reward Function

The policy πθ was optimized based on Behavioral
Cloning (BC) [24], Generative Adversarial Imitation Learn-
ing (GAIL) grt reward [25], curiosity crt reward [26] as well
as an extrinsic reward ert (as detailed in Equation 8).

Particularly, The agent received a reward of rcheckpoint =
+0.01 for passing each of the 19 checkpoints ci, where i ∈
[A,B, · · · ,S] on the racetrack, rlap = +0.1 upon completing
a lap, rbest lap = +0.7 upon achieving a new best lap time,
and a penalty of rcollision = −1 for colliding with any of
the track walls wj , where j ∈ Rn. Additionally, the agent
received continuous rewards proportional to its velocity vt,
encouraging it to optimize its trajectory spatio-temporally.

erit =

rcollision if collision occurs
rcheckpoint if checkpoint is passed
rlap if completed lap
rbest lap if new best lap time is achieved
0.01 ∗ vit otherwise

(8)

E. Training

The policy πθ was optimized to maximize the expected
future discounted reward (GAIL, curiosity and extrinsic
rewards), while also minimizing the BC loss (refer Fig. 5).

This use-case also employed a fully connected neural
network (FCNN) as a function approximator for πθ (at|ot).
The network had R28 inputs, R2 outputs, and three hidden
layers with 128 neural units each. The policy parameters
θ ∈ Rd were defined in terms of the network’s parameters.
The policy was trained to predict throttle and steering com-
mands directly based on collected observations, utilizing the
proximal policy optimization (PPO) algorithm [23].

F. Deployment

The trained policies were deployed onto the respective
simulated vehicles, which were made to race head-to-head
on the same track with a phase-shifted initialization (as in
real F1TENTH competitions).

Fig.6(a)-(c) present three snapshots of a block-block-
overtake sequence, wherein the red agent kept blocking the
blue agent throughout the straight, but the blue agent took a
wider turn with higher velocity and took advantage of its
under-steer characteristic to cut in front of the red agent
and overtake it. Fig.6(d)-(f) display three snapshots of a let-
pass-and-overtake sequence, wherein the blue agent found
a gap between the red agent and inside edge of the track
and opportunistically overtook it. However, due to its under-
steering characteristic, it went wider in the corner, thereby
giving the red agent an opportunity to overtake it and re-
claim the leading position.

V. CONCLUSION

This work presented a multi-agent reinforcement learning
framework for imbibing cooperative and competitive behav-
iors within autonomous vehicles using the real2sim approach.
We discussed representative case-studies for each behavior
type and analyzed the training and deployment results. A
natural extension of this work would be to analyze the
sim2real [27] transfer of these trained policies.

REFERENCES

[1] S. H. Semnani, H. Liu, M. Everett, A. de Ruiter, and J. P. How, “Multi-
agent Motion Planning for Dense and Dynamic Environments via Deep
Reinforcement Learning,” 2020.

[2] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
Optimally Decentralized Multi-Robot Collision Avoidance via Deep
Reinforcement Learning,” 2018.

[3] S. Aradi, “Survey of Deep Reinforcement Learning for Motion Plan-
ning of Autonomous Vehicles,” 2020.

[4] D. Wang, H. Deng, and Z. Pan, “MRCDRL: Multi-Robot Coordination
with Deep Reinforcement Learning,” Neurocomputing, 2020.

[5] X. Zhou, P. Wu, H. Zhang, W. Guo, and Y. Liu, “Learn to navigate:
cooperative path planning for unmanned surface vehicles using deep
reinforcement learning,” IEEE Access, vol. 7, pp. 165 262–165 278,
2019.

[6] K. Sivanathan, B. K. Vinayagam, T. Samak, and C. Samak, “De-
centralized Motion Planning for Multi-Robot Navigation using Deep
Reinforcement Learning,” in 2020 3rd International Conference on
Intelligent Sustainable Systems (ICISS), 2020, pp. 709–716.

[7] F. Fuchs, Y. Song, E. Kaufmann, D. Scaramuzza, and P. Dürr, “Super-
Human Performance in Gran Turismo Sport Using Deep Reinforce-
ment Learning,” IEEE Robotics and Automation Letters, vol. 6, no. 3,
pp. 4257–4264, 2021.

[8] Y. Song, H. Lin, E. Kaufmann, P. Dürr, and D. Scaramuzza, “Au-
tonomous Overtaking in Gran Turismo Sport Using Curriculum Rein-
forcement Learning,” 2021.

[9] C. V. Samak, T. V. Samak, and S. Kandhasamy, “Autonomous Racing
using a Hybrid Imitation-Reinforcement Learning Architecture,”
2021. [Online]. Available: https://arxiv.org/abs/2110.05437

[10] J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi,
and R. Mangharam, “Autonomous Vehicles on the Edge: A Survey
on Autonomous Vehicle Racing,” IEEE Open Journal of Intelligent
Transportation Systems, vol. 3, pp. 458–488, 2022.

[11] T. Samak, C. Samak, S. Kandhasamy, V. Krovi, and M. Xie,
“AutoDRIVE: A Comprehensive, Flexible and Integrated Digital
Twin Ecosystem for Autonomous Driving Research & Education,”
Robotics, vol. 12, no. 3, p. 77, May 2023. [Online]. Available:
http://dx.doi.org/10.3390/robotics12030077

[12] T. V. Samak and C. V. Samak, “AutoDRIVE - Technical Report,”
2022.

[13] C. Samak, T. Samak, and V. Krovi, “Towards mechatronics approach
of system design, verification and validation for autonomous vehicles,”

in 2023 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM), 2023, pp. 1208–1213.

[14] M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant,
R. Mangharam, D. Agarwal, M. Behl, P. Burgio, and M. Bertogna.
(2019) F1/10: An Open-Source Autonomous Cyber-Physical Platform.
[Online]. Available: https://arxiv.org/abs/1901.08567

[15] T. V. Samak, C. V. Samak, and M. Xie, “AutoDRIVE Simulator: A
Simulator for Scaled Autonomous Vehicle Research and Education,”
in 2021 2nd International Conference on Control, Robotics and
Intelligent System, ser. CCRIS’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 1–5. [Online]. Available:
https://doi.org/10.1145/3483845.3483846

[16] T. V. Samak and C. V. Samak, “AutoDRIVE Simulator - Technical
Report,” 2022. [Online]. Available: https://arxiv.org/abs/2211.07022

[17] Mathworks Inc., “RoadRunner,” 2021. [Online]. Available: https:
//www.mathworks.com/products/roadrunner.html

[18] Association for Standardization of Automation and Measuring
Systems (ASAM), “OpenSCENARIO,” 2021. [Online]. Available:
https://www.asam.net/standards/detail/openscenario

[19] ——, “OpenDRIVE,” 2021. [Online]. Available: https://www.asam.n
et/standards/detail/opendrive

[20] Unity Technologies, “Unity,” 2021. [Online]. Available: https:
//unity.com

[21] ——, “Unity Terrain,” 2021. [Online]. Available: https://docs.unity3d
.com/Manual/script-Terrain.html

[22] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion,
C. Goy, Y. Gao, H. Henry, M. Mattar, and D. Lange, “Unity: A
General Platform for Intelligent Agents,” 2018. [Online]. Available:
https://arxiv.org/abs/1809.02627

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017. [Online]. Available:
https://arxiv.org/abs/1707.06347

[24] M. Bain and C. Sammut, “A Framework for Behavioural Cloning,” in
Machine Intelligence 15, 1995.

[25] J. Ho and S. Ermon, “Generative Adversarial Imitation Learning,” in
Proceedings of the 30th International Conference on Neural Informa-
tion Processing Systems, ser. NIPS’16. Red Hook, NY, USA: Curran
Associates Inc., 2016, p. 4572–4580.

[26] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-Driven
Exploration by Self-Supervised Prediction,” in Proceedings of the
34th International Conference on Machine Learning - Volume 70, ser.
ICML’17. JMLR.org, 2017, p. 2778–2787.

[27] C. V. Samak, T. V. Samak, and V. Krovi, “Towards sim2real transfer
of autonomy algorithms using autodrive ecosystem,” 2023.

https://arxiv.org/abs/2110.05437
http://dx.doi.org/10.3390/robotics12030077
https://arxiv.org/abs/1901.08567
https://doi.org/10.1145/3483845.3483846
https://arxiv.org/abs/2211.07022
https://www.mathworks.com/products/roadrunner.html
https://www.mathworks.com/products/roadrunner.html
https://www.asam.net/standards/detail/openscenario
https://www.asam.net/standards/detail/opendrive
https://www.asam.net/standards/detail/opendrive
https://unity.com
https://unity.com
https://docs.unity3d.com/Manual/script-Terrain.html
https://docs.unity3d.com/Manual/script-Terrain.html
https://arxiv.org/abs/1809.02627
https://arxiv.org/abs/1707.06347
http://www.cse.unsw.edu.au/~claude/papers/MI15.pdf
https://dl.acm.org/doi/pdf/10.5555/3157382.3157608
https://dl.acm.org/doi/pdf/10.5555/3305890.3305968
https://dl.acm.org/doi/pdf/10.5555/3305890.3305968

	Introduction
	Digital Twin Creation
	Vehicle Dynamics Models
	Sensor Models
	Actuator Models
	Environment Models

	Cooperative Multi-Agent Scenario
	Problem Formulation
	State Space
	Observation Space
	Action Space
	Reward Function
	Optimization Problem
	Training
	Deployment

	Competitive Multi-Agent Scenario
	Problem Formulation
	Observation Space
	Action Space
	Reward Function
	Training
	Deployment

	Conclusion
	References

