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Abstract— Game-theoretic inverse learning is the problem
of inferring the players’ objectives from their actions. We
formulate an inverse learning problem in a Stackelberg game
between a leader and a follower, where each player’s action
is the trajectory of a dynamical system. We propose an active
inverse learning method for the leader to infer which hypothesis
among a finite set of candidates describes the follower’s objec-
tive function. Instead of using passively observed trajectories
like existing methods, the proposed method actively maximizes
the differences in the follower’s trajectories under different
hypotheses to accelerate the leader’s inference. We demonstrate
the proposed method in a receding-horizon repeated trajectory
game. Compared with uniformly random inputs, the leader
inputs provided by the proposed method accelerate the conver-
gence of the probability of different hypotheses conditioned on
the follower’s trajectory by orders of magnitude.

I. INTRODUCTION

Learning to predict human behavior is a critical challenge
in human-robot interaction. It enables robots to customize
their strategies in various applications, including assisted
driving [1], [2], traffic management [3], [4], and, in general,
mitigating conflicts in human-in-the-loop robotic systems.

Game-theoretic inverse learning helps robots explain and
predict human behavior in noncooperative interactions [5],
[6], [7], [8], [9], [10], [11], [3]. The idea is to first model
humans’ objectives as parameterized functions, then infer
the parameter value such that the corresponding game-
theoretic strategies—such as Nash or Stackelberg equilibrium
strategies—match the humans’ actions in a dataset. Game-
theoretic inverse learning is a necessary step in understand-
ing human-robot interactions [12], [13], [3] and designing
incentives for multiagent systems [14], [15].

The existing game-theoretic inverse learning methods are
passive, which can be data inefficient. In particular, these
methods record the dataset of human actions before and
independently of the inference process. Hence some actions
in the recorded dataset can be uninformative for inference
purposes, or simply redundant. As a result, passive inverse
learning lacks the data efficiency to enable rapid inference
and support online real-time decision-making.

In contrast to passive inverse learning, active inverse learn-
ing helps robots to infer human intentions in cooperative in-
teractions by actively provoking informative human actions.
For example, when learning objectives that explain human’s
ranking or rating of presented options, active inverse learning
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methods first provoke informative human actions and record
them in the dataset, then infer the human’s objective function,
and repeat this process if necessary [16], [17], [18], [19],
[20]. These methods ensure that the human’s actions are
informative by maximizing the volume removed from the
hypothesis space [18], [21], [22], [23], [24], [25] or by
maximizing the information gain [26], [27], [4], [28], [29],
[30]. By integrating dataset updates with inference, active
inverse learning provides practical solutions for inferring
human intentions from limited interactions.

Despite its successes, active inverse learning still requires
investigation in noncooperative interactions. The existing
active inverse learning methods rely on querying humans
who volunteer informative responses. In contrast, humans in
noncooperative interactions only take actions that optimize
their own objectives. Therefore, how to provoke informative
actions from noncooperative humans that reveal their objec-
tives is, to our best knowledge, still an open question.

We formulate an inverse learning problem in a Stackelberg
game where a rational leader, such as a robot, is inferring
which hypothesis among finitely many candidates best ex-
plains the behavior of a boundedly rational follower, such
as a human. This problem is particularly relevant in shared
autonomy, e.g., when an autopilot is inferring the type of
a newly encountered human driver. We model each player’s
action as the trajectory of a linear time-invariant system. The
follower tracks a linear function of the leader’s trajectory—
similar to how a human driver tracks the trajectory recom-
mended by an autopilot—using a maximum-entropy linear
quadratic regulator—which contains a parameterized objec-
tive function—that models bounded rationality in human
decision-making [3]. The leader determines which hypothesis
is most likely using the probability of each hypothesis
conditioned on the follower’s state trajectory.

We propose an active inverse learning method to provoke
informative trajectories from the follower by optimizing the
leader’s inputs. In this optimization, we maximize the differ-
ences in the follower’s trajectory distributions under different
hypotheses. We show that this optimization is a difference-of-
convex program [31], which can be solved efficiently via the
convex-concave procedure [32]. We evaluate the performance
of the proposed method in a receding-horizon repeated
trajectory game. Compared with random inputs, the leader
inputs provided by our method accelerate the convergence
of the probability of different hypotheses conditioned on the
follower’s trajectory by orders of magnitude.
Notation: We let R, R≥0, and N denote the set of real, non-
negative real numbers, and nonnegative integers, respectively.
We let Sn⪰0 and Sn≻0 denote the set of n by n symmetric



positive semidefinite and positive definite matrices, respec-
tively. For any x ∈ Rn, we let ∥x∥ :=

√
x⊤x, ∥x∥1 :=∑n

i=1 |xi|, ∥x∥∞ := max1≤i≤n |xi|, and ∥x∥2A := x⊤Ax
for all A ∈ Sn⪰0. We let 0n denote the n-dimensional zero
vector; In and 0n×n denote the n by n identity and zero
matrix, respectively. We let N (µ,Σ) denote the Gaussian
distribution with mean µ ∈ Rn and variance Σ ∈ Sn≻0.
Given n1, n2 ∈ N, we let [n1, n2] denote the set of integers
between n1 and n2. Given ai ∈ Rn for all i ∈ N, we let
ai:j :=

[
a⊤i a⊤i+1 · · · a⊤j

]⊤
for all i < j, i, j ∈ N.

II. LINEAR QUADRATIC STACKELBERG TRAJECTORY
GAMES

We introduce a Stackelberg game between a rational
leader, such as a robot, and a boundedly rational follower,
such as a human with noisy behavior. The players’ actions
are trajectories of stochastic linear time-invariant systems.

A. The dynamics of the players’ systems

We assume that the leader’s state evolves according to the
following discrete-time linear time-invariant dynamics:

xLt+1 = ALxLt +BLuLt + wL
t (1)

for all t ∈ N, where xLt ∈ RnL , uLt ∈ RmL , and wL
t ∈ RL

are the state, input, and disturbance of the system at time
t ∈ N, respectively; AL ∈ RnL×nL and BL ∈ RnL×mL are the
leader’s system parameters. Equation (1) characterizes the
dynamics of many common robots, such as the kinematics
of rovers and drones.

Similarly, the follower’s state evolves according to the
following dynamics:

xFt+1 = AFxFt +BFuFt + wF
t (2)

for all t ∈ N, where xFt ∈ RnL , uFt ∈ RmL , and wF
t ∈ RnL

denote the state, input, and disturbance of the system at time
t ∈ N, respectively; AF ∈ RnL×nL and BF ∈ RnF×mF are
the follower’s system parameters.

Throughout, we assume that the disturbance in the leader
and the follower’s systems are independent, identically dis-
tributed Gaussian vectors, i.e., there exists ΩL ∈ SnL

≻0 and
ΩF ∈ SnF

≻0 such that, for any t ∈ N, we have

wL
t ∼ N (0nL ,Ω

L), wF
t ∼ N (0nL ,Ω

F). (3)

B. The players’ objectives

We assume that the follower’s objective is to track a linear
function of the leader’s trajectory. In particular, we let MF ∈
RnF×nL denote a matrix that maps the leader’s internal state
to an output reference observable to the follower. Let xL0:τ
denote a leader trajectory of length τ ∈ N. The follower’s
objective is to simultaneously track the corresponding out-
put trajectory {MFxL0,M

FxL1, . . . ,M
FxLτ} and minimize its

input efforts.
We assume that the follower is boundedly rational and

chooses its input according to the maximum entropy princi-
ple, which states that the distribution of uFt conditioned on
xFt is Gaussian, i.e., µFt |xFt ∼ N (µt,Σt) for some µt ∈ RnF

and Σt ∈ RnF [3]. In particular, (µ0:τ−1,Σ0:τ−1) is optimal
for the following stochastic trajectory optimization problem:

minimize
µ0:τ−1,Σ0:τ−1

∑τ
t=0E

[
1
2 ∥x

F
t −MFxLt ∥

2
QF

]
+ 1

2

∑τ−1
t=0

(
E
[
∥uFt ∥

2
RF

]
− log detΣt

)
subject to xFt+1 = AFxFt +BFuFt + wF

t , x
F
0 = x̂F0,

uFt |xFt ∼ N (µt,Σt), w
F
t ∼ N (0nF ,Ω

F),
t ∈ [0, τ − 1],

(4)
where x̂F0 ∈ RF is the initial state of the follower’s system,
E[·] denotes the expectation; QF ∈ Sn⪰0, and RF ∈ Sn≻0 are
the follower’s cost parameters. The objective function in op-
timization (4) captures boundedly rational human decisions:
it is noisy but centers around a cost-minimizing rational
decision.

The following proposition provides a closed-form formula
for the solution of optimization (4).

Proposition 1. Let

P F
τ = QF, P F = QF + (AF)⊤P F

t+1E
F
t , (5a)

F F
t = BF(R+ (BF)⊤P F

t+1B
F)−1(BF)⊤, (5b)

EF
t = AF − F F

t P
F
t+1A

F, (5c)

qFτ = −QFMFxLτ , q
F
t = (EF

t )
⊤qFt+1 −QFMFxLt , (5d)

for all t ∈ [0, τ−1]. Given xL0:τ , (µ0:τ−1,Σ0:τ−1) is optimal
for optimization (4) if and only if

Σt = (RF + (BF)⊤P F
t+1B

F)−1, (6a)

µt = −Σt(B
F)⊤(P F

t+1A
FxFt + qFt+1). (6b)

for all t ∈ [0, τ − 1]. Furthermore, if the constraints in (4)
hold, then xFt ∼ N (ξt,Λt) for all t ∈ [0, τ ], where

ξt+1 = EF
t ξt − F F

t q
F
t+1, (7a)

Λt+1 = EF
t Λt(E

F
t )

⊤ + F F
t +ΩF, (7b)

for all t ∈ [0, τ − 1], with ξ0 = x̂F0 and Λ0 = 0nF×nF ..

Proof. See Appendix.

The leader’s objective is to minimize a cost function that
jointly depends on the expected follower’s trajectory and the
leader’s trajectory. To this end, we assume that the leader
acts rationally and chooses its trajectory xL0:τ as a solution
to the following trajectory optimization problem:

minimize
u0:τ−1

E[f(xL0:τ , x
F
0:τ )] + g(uL0:τ )

subject to xLt+1 = ALxLt +BLuLt + wL
t , x

L
0 = x̂L0,

xFt+1 = AFxFt +BFuFt + wF
t , x

F
0 = x̂F0,

wL
t ∼ N (0nL ,Ω

L), wF
t ∼ N (0nF ,Ω

F),
ut ∈ U, uFt |xFt ∼ N (µt,Σt), t ∈ [0, τ − 1],
(µ0:τ−1,Σ0:τ−1) is optimal for (4),

(8)
where x̂L0 ∈ RnL is the initial state of the leader’s system,
U ⊂ RmF is the set of feasible leader inputs at each
time. Furthermore, f : R(τ+1)nL × R(τ+1)nL → R is the
leader’s cost function that jointly depends on the leader’s
state trajectory xL0:τ and the follower’s state trajectory xF0:τ ;



g : RτmL → R is a cost function that only depends on
the leader’s input trajectory. By choosing different functions
for f and g, optimization (8) achieves different trade-offs
between optimizing the leader and the follower’s trajectory.

Problem (8) is a Stackelberg game, also known as a bilevel
optimization. See [33] and reference therein for a detailed
discussion on bilevel optimization.

III. ACTIVE INVERSE LEARNING VIA DIFFERENCE
MAXIMIZATION

Given the Stackelberg trajectory game introduced in Sec-
tion II, we now consider the case where the leader does
not know the parameter tuple (QF, RF,MF) in the fol-
lower’s objective, except that it is one of finitely many
candidates. In other words, the leader knows that there
exist Q1, . . . , Qd ∈ RnF×nF

, R1, . . . , Rd ∈ RmF×mF

, and
M1, . . . ,Md ∈ RnF×nL

such that

(QF, RF,MF) = (Qi, Ri,M i) (9)

for some i ∈ [1, d]. This case arises, for example, when
a robot already learned different types of human behavior
offline but needs to determine the type of a newly encoun-
tered human via online interaction. In the following, we let
θF := (QF, RF,MF) and θi := (Qi, Ri,M i) for all i ∈ [1, d].
We say that hypothesis i is true if (9) holds.

Based on a prior probability distribution of all hypotheses
that gives the value of P(θF = θi|xF0) for all i ∈ [1, d] and
the follower’s trajectory xF1:τ , the leader can infer whether
hypothesis i is more likely than hypothesis j to be true by
computing the following ratio:

P(θF = θi|xF0:τ )
P(θF = θj |xF0:τ )

=
P(θF = θi|xF0)P(xF1:τ |θF = θi)

P(θF = θj |xF0)P(xF1:τ |θF = θj)
(10)

The ratio in (10) being bigger than one implies that trajectory
xF0:τ is more likely to occur under hypothesis i rather than
hypothesis j, and vice versa.

However, observing the follower’s trajectory can be un-
informative for the inference above if the trajectories under
different hypotheses are similar. For example, suppose that

P(xF1:τ |θF = θi) ≈ P(xF1:τ |θF = θj) (11)

for some i ̸= j, then (10) implies that P(θF=θi|xF0:τ )
P(θF=θj |xF0:τ )

≈
P(θF=θi|xF0)
P(θF=θj |xF0)

. In other words, observing the follower’s ongoing
trajectory xF1:τ does not help the leader distinguish hypothesis
i from j. In the following, we discuss how the leader
can actively avoid the scenarios where (11) happens by
making the follower’s trajectories under different hypotheses
as different as possible.

A. The follower’s trajectories under different hypotheses
To avoid the scenarios where (11) happens, it suffices to

make the follower’s trajectory distributions under different
hypotheses as different as possible. To this end, we first take
a closer look at the follower’s trajectory. Proposition 1 shows
that the follower’s state at each time is a Gaussian random
variable. Particularly, let

Ei
t = AF − F i

tP
i
t+1A

F, (12a)

F i
t = BF(RF + (BF)⊤P i

t+1B
F)−1(BF)⊤, (12b)

P i
τ = Qi, P i

t = Qi + (AF)⊤P i
t+1E

i
t , (12c)

Λi
0 = 0nF×nF , Λ

i
t+1 = Ei

tΛ
i
t(E

i
t)

⊤ + F i
t +ΩF, (12d)

qiτ = −QiM ixLτ , q
i
t = (Ei

t)
⊤qit+1 −QiM ixLt , (12e)

ξi0 = x̂F0, ξ
i
t+1 = Ei

tξ
i
t + F i

t q
i
t+1, (12f)

for all t ∈ [0, τ−1]. Proposition 1 implies that, if hypothesis
i is true, i.e., θF = θi, then

xFt ∼ Gi
t := N (ξit,Λ

i
t). (13)

To measure the differences between the trajectory distri-
bution under different hypotheses, we introduce a distance
function. To this end, let

D := {(i, j)|i < j, i, j ∈ [1, d]}. (14)

A popular measure of the difference between two Gaussian
distributions is the KL-divergence. Given (i, j) ∈ D and t ∈
[1, τ ], let Gi

t and Gj
t be defined as in (13). The KL-divergence

from Gi
t to Gj

t is as follows:

DKL(Gi
t ||G

j
t ) :=

1
2

∥∥∥ξit − ξjt

∥∥∥2
(Λj

t)
−1

− (τ+1)nF

2

+ 1
2 log

(
det Λj

t

det Λi
t

)
+ tr((Λj

t )
−1Λi

t).

(15)

Notice that, since ΩF ∈ SnF
≻0, (12) implies that Λi

t ∈ SnF
≻0 for

all t ∈ [1, τ ] and k ∈ [1, d]. However, KL divergence is not
symmetric, i.e., DKL(Gi

t ||G
j
t ) ̸= DKL(Gj

t ||Gi
t). To define

a symmetric distance function, we propose the following
function

D(Gi
t ,G

j
t ) :=

∥∥∥ξit − ξjt

∥∥∥2
(Λi

t)
−1+(Λj

t)
−1

(16)

for all t ∈ [1, τ ] and (i, j) ∈ D. The intuition behind this
distance function is to first evaluate (up to a constant of 2,
for the convenience of notation) the sum of DKL(Gi

t ||G
j
t ) and

DKL(Gj
t ||Gi

t), then remove the terms that are independent of
ξit and ξjt , which are, as suggested by (12), independent of
the leader’s trajectory. Later, we use this function to optimize
the leader’s inputs.

B. Maximizing the worst-case pairwise distance
To avoid the scenarios where (11) happens, we need to

maximize the value of the distance function in (16) for any
(i, j) ∈ D. To this end, define the following worst-case
distance function, which evaluates the minimum value of
function (16) among all (i, j) ∈ D:

min
(i,j)∈D

{∑τ
t=1

∥∥ξit − ξit
∥∥2
(Λi

t)
−1+(Λj

t)
−1

}
=

∑
(i,j)∈D

∑τ
t=1

∥∥ξit − ξit
∥∥2
(Λi

t)
−1+(Λj

t)
−1

− max
(i,j)∈D

{ ∑
(k,l)∈D\{(i,j)}

∑τ
t=1

∥∥ξkt − ξlt
∥∥2
(Λk)−1

t +(Λl)−1
t

}
.

(17)
The second step in (17) uses the fact that, given any
α1, . . . , αn ∈ R, we have

min
i∈[1,n]

αi =
∑

i∈[1,n]

αi − max
i∈[1,n]

∑
j∈[1,n],j ̸=i

αj .



Notice that the distance in (17) does not include the terms
for t = 0 since, due to (12), ξi0 = ξj0 for all (i, j) ∈ D.

Based on the worst-case distance in (17), we propose
to optimize the leader’s input trajectory uL0:τ−1 via solving
optimization (18) (see next page) instead of optimization (8),
where Ei

t , F
i
t and Λi

t are given by (12). The idea of optimiza-
tion (18) is to first approximate the leader’s state trajectory
xL0:τ with its expectation, denoted by η0:τ , which satisfies the
averaged dynamics ηt+1 = ALηt+B

LuLt . This approximation
replaces the disturbance term wL

t in (8) with its most probable
estimation of its distribution N (0nL ,Ω

L), given by wL
t = 0nL .

In addition, optimization (18) replaces the E[f(xL0:τ , x
F
0:τ )]

term in (8) with the negative of the worst-case distance in
(17). In particular, the constraints in (18) imply that

max
(i,j)∈D

{ ∑
(k,l)∈D\{(i,j)}

τ∑
t=1

∥∥ξkt − ξlt
∥∥2
(Λk)−1

t +(Λl)−1
t

}
≤ s.

Since the objective function in (18) is minimizing the value
of s, the above inequality holds as an equality at optimality.
Hence the objective function in (18) is equivalent to the one
in (8) except that the E[f(xL0:τ , x

F
0:τ )] term in (8) is replaced

by the negative of the worst-case distance in (17). The idea
of this replacement is to maximize the worst-case distance
in (17), which ensures that the distance in (16) is large for
any (i, j) ∈ D.

Optimization (18) is a difference-of-convex program:
all of its constraints are convex, but its objective function
is the difference between two convex functions [31]. A
popular solution method for difference-of-convex programs
is the convex-concave procedure, which guarantees global
convergence to a stationary point [34], and provides locally
optimal solutions in practice [32].

IV. NUMERICAL EXPERIMENTS

We empirically demonstrate our results using a receding-
horizon repeated trajectory game between a boundedly ra-
tional follower that controls one ground rover and a rational
leader that controls multiple ground rovers. The leader is
inferring which leading rover the follower is following. At
each time step, the players play a Stackelberg trajectory game
and implement only the first step of theire respective input
trajectories.

We define the game parameters as follows. We model
the dynamics of the following rover using an instance
of (1), where AF = exp

(
δ
[
02×2 I2
02×2 02×2

])
, BF =∫ δ

0
exp

(
t
[
02×2 I2
02×2 02×2

])
dt
[
02×2

I2

]
, ΩF = 1

1000I4, and δ = 0.2

is the discretization step size. For the leader, we model the
joint dynamics of d ∈ N ground rovers using the joint
dynamics of d double-integrators, where we let AL = Id⊗A,
BL = Id ⊗ B, and ΩL = 1

1000I4d×4d. For the follower’s
trajectory optimization in (4), we let Qi = diag([ 1 1 0 0 ]),
Ri = 1

100I2, and M i = [ 04×4(i−1) I4 04×4(d−i) ] for
all i ∈ [1, d]. Without loss of generality, we assume
(QF, RF,MF) = (Q1, R1,M1). For the leader’s trajectory
optimization in (8), we let U := {u ∈ R2d| ∥u∥∞ ≤ 2}, and
g(uL0:τ−1)

∑τ−2
t=1

∥∥uLt+1 − uLt
∥∥2.

We demonstrate the proposed learning methods using the
simulation of a receding-horizon repeated trajectory game.
At time tδ for some t ∈ N, the leader first observes its
current state xLt and the follower’s current state xFt , then
solves optimization (18) with x̂L0 = xLt and x̂F0 = xFt to
obtain the optimal input sequence uL0:τ−1. Next, the leader
simulates a state trajectory xL0:τ−1 according to (1) and shares
it with the follower, then applies uL0. Meanwhile, at time
tδ, the follower observes its current state x̂Ft and receives
the leader’s simulated trajectory xL0:τ . Next the follower
solves optimization (4) with x̂F0 = xFt and obtain the optimal
mean and covariance sequences (µ0:τ−1,Σ0:τ−1), and finally
samples uF0 ∼ N (µ0,Σ0) and applies uF0 to its system.

We simulate the players’ trajectories in this receding-
horizon repeated trajectory game, where we solve the leader’s
trajectory optimization (18) using the convex-concave pro-
cedure [32]. Fig. 1 shows the position trajectories of the
leader’s rovers when d = 3 and d = 5. We can see that, to
make the follower’s trajectories under different hypotheses as
different as possible, optimization (18) ensures that different
leading rovers are moving in different directions.

We further showcase the advantage of the proposed
method in terms of distinguishing different hypotheses. To
this end, we let p⋆ =

[
1 0 · · · 0

]⊤ ∈ Rd denote the
ground truth probability of all hypotheses (note that we
let (QF, RF,MF) = (Q1, R1,M1)). In addition, we let pt

denote the d-dimensional vector such that

pti := P((Q
F, RF,MF) = (Qi, Ri,M i)|xF0:t) (19)

for all i ∈ [1, d], where we let P((QF, RF,MF) =
(Qi, Ri,M i)|xF0) := 1

d for all i ∈ [1, d], i.e., we choose the
uniform distribution as the leader’s prior distribution over
all hypotheses given the follower’s initial state. Notice that
one can compute pt recursively using the Bayes rule. Fig. 2
shows the time history of the ℓ1-norm distance between
pt and p⋆, and compare the results where the leader uses,
instead of the inputs optimal for optimization (18), inde-
pendent and identically distributed input sampled from the
uniform distribution over U. The results in Fig. 2 show that,
when compared with uniformly random inputs, the proposed
method provide leader inputs that reduce the difference
between pt and p⋆ by orders of magnitudes.

V. CONCLUSION

We formulated an inverse learning problem in a Stackel-
berg trajectory game, where the leader is inferring the type of
the follower’s cost function by observing its trajectories. We
proposed an active inverse learning method to accelerate the
leader inference by making the follower’s trajectories under
different hypotheses as different as possible. This method
accelerates the convergence of the probability of different
hypotheses by orders of magnitude when compared against
random inputs.

However, the current work still has limitations. For exam-
ple, it considers neither nonlinear dynamics nor constraints
for input limits and collision avoidance in the players’
trajectory optimization. In addition, it ignores the possibility



minimize
s,uL

0:τ−1

s−
∑

(i,j)∈D
∑τ

t=0

∥∥∥ξit − ξjt

∥∥∥2
(Λi

t)
−1+(Λj

t)
−1

+ g(u0:τ−1)

subject to ηLt+1 = ALηLt +BLuLt , η
L
0 = x̂L0,

qit = (Ei
t)

⊤qit+1 −QiM iηt, q
i
τ = −QiM iητ , ξ

i
t+1 = Ei

tξ
i
t − F i

t q
i
t+1, ξ

i
0 = x̂F0,∑

(k,l)∈D\{(i,j)}
∑τ

t=1

∥∥ξkt − ξlt
∥∥2
(Λk)−1

t +(Λl)−1
t

≤ s, ∀t ∈ [0, τ − 1], i ∈ [1, d], (i, j) ∈ D.

(18)
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Fig. 1: The position trajectories of the leader’s rovers, where
different rover’s trajectories are marked by different colors.
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Fig. 2: The comparison of the convergence of pt when the
leader obtains its input by solving optimization 18 versus
sampling uniformly in set U. The solid lines show the median
over 100 simulations, while the boundaries of the colored
areas mark the corresponding first and third quartiles.

of deceptive actions of the follower. In future work, we
plan to address these limitations and develop information-
gathering strategies in general Bayesian games.

APPENDIX

Proof of Proposition 1

Given y ∈ RnF and t ∈ [0, τ ], let

ψt(y, µt:τ ,Σt:τ )

:=
∑τ

j=tE
[
1
2

∥∥xFj −MFxLj
∥∥2
QF |xFt = y

]
+ 1

2

∑τ−1
j=t

(
E
[∥∥uFj∥∥2RF |xFt = y

]
− log detΣj

)
.

(20)

where xFj+1 = AFxFj +BFuFj and uFj ∼ N (µj ,Σj). Further-
more, let

Vt(y) := min
µt:τ−1,Σt:τ−1

ψt(y, µt:τ ,Σt:τ ) (21)

for all t ∈ [0, τ ]. Then one can verify that the optimal
value of optimization (4) is V (x̂F0). In addition, we can show
that Vτ (y) = 1

2y
⊤QFy− ⟨QFMFxLτ , y⟩+ 1

2 ∥M
FxLτ∥

2
QF , i.e.,

Vτ (y) is a quadratic function of y. Suppose that Vt+1(y) is
a quadratic function of y, i.e., there exists P F

t+1 ∈ RnF×nF ,
qFt+1 ∈ RF, and νFt+1 ∈ R, such that

Vt+1(y) =
1
2y

⊤P F
t+1y + ⟨qFt+1, y⟩+ νFt+1. (22)

Then (21) and the principle of dynamic programming to-
gether imply that

Vt(y)

= min
µt,Σt

E
[
1
2 ∥u

F
t ∥

2
RF + Vt+1(A

FxFt +BFuFt + wF
t )|xFt = y

]
+ 1

2 ∥y −MFxFt ∥
2
QF − 1

2 log detΣt

(23)
where uFt |xFt ∼ N (µt,Σt). Observe that

E[
∥∥uFt ∥∥2RF |xFt = y]

= µ⊤
t R

Fµt + E[tr((u
F
t − µt)(u

F
t − µt)

⊤RF)|xFt = y]

= µ⊤
t R

Fµt + tr(ΣtR
F).

(24)
In addition, by using (22) we can show that

E[Vt+1(A
FxFt +BFuFt + wF

t )|xFt = y]

= 1
2 (A

Fy +BFµt)
⊤P F

t+1(A
Fy +BFµt)

+ E[(AFxFt +BFµt)
⊤P F

t+1B
F(uFt − µt)|xFt = y]

+ 1
2E[(B

F(uFt − µt))
⊤P F

t+1B
F(ut − µt)|xFt = y]

+ ⟨qFt+1, A
Fy +BFµt⟩+

1

2
E[tr(wF

t (w
F
t )

⊤Pt+1)] + νFt+1

= 1
2 (A

Fy +BFµt)
⊤P F

t+1(A
Fy +BFµt) +

1
2 tr(Ω

FPt+1)

+ 1
2 tr(Σt(B

F)⊤P F
t+1B

F) + ⟨qFt+1, A
Fy +BFµt⟩+ νFt+1.

(25)



Substituting (25) and (24) into (23) gives

Vt(y)

= 1
2y

⊤(QF + (AF)⊤P F
t+1A

F)y + ⟨A⊤qFt+1 −QFMFxLt , y⟩
+ 1

2µ
⊤
t (R

F + (BF)⊤P F
t+1B

F)µt +
1
2 (x

L
t )

⊤(MF)⊤QFMFxLt

+ ⟨(BF)⊤qFt+1 + (BF)⊤P F
t+1A

Fy, µt⟩ −
1

2
log detΣt

+ 1
2 tr(ΣtR

F +ΩFPt+1 + (BF)⊤P F
t+1B

F)) + νFt+1.
(26)

By setting the derivative of Vt(y) with respect to µt and Σt

to zero, we obtain (6). By substituting (6) into (26), we can
show that Vt(y) = 1

2y
⊤P F

t y + ⟨qFt , y⟩ + νFt , where QF
t and

qFt satisfy (5).
Next, let Kt = −Σt(B

F)⊤P F
t+1A

F and bt =
−Σt(B

F)⊤qFt+1. Then (6) implies that uFt |xFt ∼ N (Ktx
F
t +

bt,Σt). Since xF0 = x̂F0, by using the results in [35, p. 91]
we can show the following:[
xF1
uF1

]
∼ N

([
ξ0

K0ξ0 + b0

]
,

[
Λ0 K0Λ0

Λ0K
⊤
0 Σ0 +K⊤

0 Λ0K0

])
.

Therefore xFt+1 = AFxFt+B
FuFt+w

F
t ∼ N (ξ1,Λ1), where ξ1

and Σ1 satisfy (7). By repeating similar steps for t ∈ [2, τ ]
we can show that (7) holds for all t ∈ [0, τ − 1], which
completes the proof.
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